20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2024

Volume 17 Issue 3
Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 3 Issue 3


An information theoretic approach for privacy metrics

Michele Bezzi(a),(*)

Transactions on Data Privacy 3:3 (2010) 199 - 215

Abstract, PDF

(a) SAP Labs; F-06560, Mougins, France.

e-mail:michele.bezzi @sap.com


Abstract

Organizations often need to release microdata without revealing sensitive information. To this scope, data are anonymized and, to assess the quality of the process, various privacy metrics have been proposed, such as k-anonymity, l-diversity, and t-closeness. These metrics are able to capture different aspects of the disclosure risk, imposing minimal requirements on the association of an individual with the sensitive attributes. If we want to combine them in a optimization problem, we need a common framework able to express all these privacy conditions. Previous studies proposed the notion of mutual information to measure the different kinds of disclosure risks and the utility, but, since mutual information is an average quantity, it is not able to completely express these conditions on single records. We introduce here the notion of one-symbol information (i.e., the contribution to mutual information by a single record) that allows to express and compare the disclosure risk metrics. In addition, we obtain a relation between the risk values t and l, which can be used for parameter setting. We also show, by numerical experiments, how l-diversity and t-closeness can be represented in terms of two different, but equally acceptable, conditions on the information gain..

* Corresponding author.

Follow us




Supports



ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 00 : 25 December 12 2014.