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Abstract. Numerous privacy models based on the k-anonymity property and extending
the k-anonymity model have been introduced in the last few years in data privacy re-
search: [-diversity, p-sensitive k-anonymity, (¢, k) — anonymity, t-closeness, etc. While
differing in their methods and quality of their results, they all focus first on masking the
data, and then protecting the quality of the data as a whole. We consider a new ap-
proach, where requirements on the amount of distortion allowed on the initial data are
imposed in order to preserve its usefulness. Our approach consists of specifying quasi-
identifiers’ generalization constraints, and achieving p-sensitive k-anonymity within the
imposed constraints. We think that limiting the amount of allowed generalization when
masking microdata is indispensable for real life datasets and applications. In this paper,
the constrained p-sensitive k-anonymity model is introduced and an algorithm for generat-
ing constrained p-sensitive k-anonymous microdata is presented. Our experiments have
shown that the proposed algorithm is comparable with existing algorithms used for
generating p-sensitive k-anonymity with respect to the results’ quality, and obviously
the obtained masked microdata complies with the generalization constraints as indi-
cated by the user.

1 Introduction

Large amounts of personal data are constantly being collected in various
application fields: for taxes, healthcare, in credit card transactions, in social
networks etc. Besides its primary purpose for which it is collected in the first
place, data is subsequently analyzed and mined by its owners and/or third
parties before being retired. But as stipulated by existing regulations in various
countries and for different application domains, the privacy of the individuals
described in electronic datasets must be protected during their collection,
storage, distribution, and use [12].
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Therefore, before publishing or releasing a microdata set (a dataset where each
tuple corresponds to one individual), a frequently used solution is to modify the
initial microdata, in order to enforce an anonymity model on it. This modifica-
tion (also known as masking) is being performed to counter record linkage at-
tacks [34] between the masked dataset and external available information, based
on a set of attributes called quasi-identifier or key attributes; if successful, such
attacks would allow gleaning the identity of individuals or their private infor-
mation from the released microdata.

Among the anonymity models targeted by the masking process are k-
anonymity [26, 27] or one of its extensions: [-diversity [21], p-sensitive k-
anonymity [29], (&, k) — anonymity [35], t-closeness [16], (k, e)-anonymity [37], (c,
k)-safety [22], m-confidentiality [35], personalized privacy [31], m-invariance
[32], &presence [24], skyline privacy [6], (& m)-anonymity [17], [*-diversity [18],
(7, A)-uniqueness [33], (k, p, q, r)-anonymity [7] etc. A microdata set conforms to
the k-anonymity property if every tuple within it is indistinguishable of at least
(k-1) other tuples, with respect to the set of quasi-identifier attributes. The other
mentioned models require extra conditions compared to k-anonymity, for in-
stance, that a certain count or distribution of sensitive attribute values are en-
sured for every group of k or more tuples that share common quasi-identifier
values.

Irrespective of the targeted anonymity model and the methods employed to
achieve it, two contradicting goals are generally followed in the masking
process: creating an anonymous dataset while preserving as much as possible
the informational content of the initial dataset. Most of the existing work focuses
first on achieving the anonymity model without limiting the amount of allowed
generalization. Therefore, even if the masked microdata is of good quality and
preserves well the overall content in the initial microdata, it can still be useless
because necessary information has been lost for critical attributes of the data.
There are several recent research papers that address this issue. Short descrip-
tion of these papers and how they differ from this paper are presented in the
related work section (Section 5).

We introduce in the next section the constrained p-sensitive k-anonymity model,
that protects against identity and attribute disclosure [13], while keeping the
quasi-identifiers’ generalization restricted to certain user-specified constraints
(or boundaries). We also describe in Section 3 an algorithm for transforming a
microdata set to conform to our new anonymity model. Experimental results are
reported in Section 4 for p-sensitive k-anonymity, constrained and not, that illu-
strate the quality of masked microdata and the masking algorithms” efficiency.
Related work is presented in Section 5. Conclusions are given in Section 6.
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2 Anonymity and Constraints

An initial microdata I is a set of tuples over a set of attributes. The attributes
describing the initial microdata set are usually categorized in the following
three types:

» Identifier attributes such as Name and SSN that can be used to identify a
record. These attributes are removed as part of the masking process because
they express information which can directly lead to a specific entity. We will
denote the identifier attributes by I, L,..., Im.

» Key or quasi-identifier attributes such as ZipCode and Age that may be known
by an intruder. Quasi-identifier attributes are present in the masked
microdata as well as in the initial microdata. However, quasi-identifier
attribute values are possibly altered in the masked microdata in order to
prevent identity and attribute disclosure. We will denote the quasi-
identifiers by Q1, Qz,..., Q.

» Sensitive or confidential attributes such as PrincipalDiagnosis and Income that
are assumed to be unknown to an intruder. Confidential attributes are
present in the masked microdata as well as in the initial microdata, and are
usually kept unmodified. We will denote the sensitive attributes by S, Sz,...,
Sr.

Let I¢ be a microdata with the schema ®={ I1, I,..., Im, Q1, Q2,..., Q, 51, S2,...,
St}. We define next what its corresponding constrained p-sensitive k-anonymous
masked microdata MM is. First of all, MM will have the schema ®’ ={ Q1, Q,...,
Qy S1, S,..., Si}, and at most | 1M| tuples; it will satisfy the k-anonymity and p-
sensitivity properties, and it will be free of constraint violations — all these
concepts are defined and explained next.

Definition 1 (QI-Cluster). Given a microdata, a QI-cluster consists of all the
tuples with identical combination of quasi-identifier attribute values in that
microdata.

Definition 2 (K-Anonymity Property). The k-anonymity property for a MM is
satisfied if every QI-cluster from MM contains k or more tuples.

Definition 3 (P-Sensitive K-Anonymity Property). A MM satisfies the p-
sensitive k-anonymity property if it satisfies k-anonymity and the number of
distinct values for each sensitive attribute is at least p within the same QI-cluster
from MM.

Based on these definitions, in a masked microdata that satisfies p-sensitive k-
anonymity, the probability to correctly identify an individual is at most 1/k and
the probability that some sensitive information about the individual is disclosed
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is at most 1/p. By increasing k and p the level of protection increases, usually
along with the changes needed to anonymize the initial microdata.

As mentioned before, the initial microdata undergoes an anonymization
process that transforms it to comply with the p-sensitive k-anonymity model.
The techniques most often employed in any anonymization process are the
generalization of quasi-identifier attribute values and tuple suppression [28].
The generalization of a quasi-identifier attribute consists in replacing the actual
values of the attribute with less specific, more general values that are faithful to
the original [28]. In this paper we use generalization based on predefined
generalization hierarchies [14], for both numerical and nominal attributes.
Suppressing entire tuples allows sometimes reducing the amount of
generalization required for achieving p-sensitive k-anonymity.

Anonymization algorithms generally try to achieve the desired protection
level with minimal changes (as quantified by an information loss measure [4]) to
the initial microdata . However, minimal changes may correspond to
generalization that surpasses a data usefulness threshold, beyond which the
masked microdata MM would become unusable. Imagine a healthcare
microdata that includes address information of the patients and of the medical
services” providers. If a study intends to verify a hypothesis that patients travel
mostly locally (county or state level) for medical services, but the available
masked microdata contains geographic information generalized to the country
level, than the study cannot be performed, due to inappropriate granularity of
the Location values. In this example the Location values should not be
generalized beyond the state level; in other words, the states should constitute
generalization boundaries for this attribute’s values.

To allow expressing generalization boundaries, we associate with each quasi-
identifier attribute value a maximum allowed generalization value. This concept is
used to express how far the owner of the data thinks that the quasi-identifier’s
values could be generalized, without causing the resulting masked microdata to
be useless. The data owner is often aware of the way various research studies
are using the data and he/she is able to identify maximum allowed
generalization values.

Definition 4 (Maximum Allowed Generalization Value). Let Q be a quasi-
identifier attribute, and #o its predefined value generalization hierarchy. For
every leaf value u € #Ho, the maximum allowed generalization value of u,
MAGVal(u), is the value (leaf or not-leaf) in #0 situated on the path from x to the
root, such that for any released microdata, the value u is permitted to be
generalized only up to MAGVal(u).
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Figure 1 contains an example of defining maximal allowed generalization
values for a subset of values for the Location attribute.

The MAGVals for the leaf values “Albany” and “Des Moines” are “New York”,
and, respectively, “Midwest” (the maximal allowed generalization values are
marked with * characters that delimit them). This means that the quasi-identifier
Location’s value “Albany” may be generalized to itself or to “New York”, but
not to “East Coast” nor the “United States”. Also, “Des Moines” may be
generalized to itself, “lowa”, or “Midwest”, but it may not be generalized to the
“United States”.

Figure 1. Example of MAGVals.

United States
East Coast/ mwest*
*Newz{\ork* *Kenﬂq* \Iowa
AR i \
Albany Buffalo Lexington Des Moines

When several MAGVals exist on the path between a particular leaf value, 4,
and the hierarchy root, then the MAGVal(u) is considered to be the first MAGVal
that is reached when following the path from u to the root node. (Several such
MAGVals on a path between a leaf and the root can result from defining
MAGVals for other leaves within that hierarchy). Therefore, the path between u
and MAGVal(x) can contain no node other than MAGVal(x) that is a maximum
allowed generalization value.

Definition 5 (Maximum Allowed Generalization Set). Let Q be a quasi-
identifier attribute and #0 its predefined value generalization hierarchy. The set
of all MAGVals for attribute Q is called Q's maximum allowed generalization
set, and it is denoted by MAGSet(Q) = { MAGVal(u) | Vu € leaves(3o) } (The
notation leaves(#Ha) represents all the leaves from the #o value generalization
hierarchy).

Given the hierarchy for the attribute Location presented in Figure 1,
MAGSet(Location) = {New York, Kentucky, Midwest}.

Usually, the data owner/user only has generalization restrictions for some of
the quasi-identifiers in a microdata that is to be masked. If for a particular quasi-
identifier attribute Q there are not any restrictions in respect to its
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generalization, then no maximal allowed generalization values are specified for
Q’s value hierarchy; in this case, each leaf value in #p is considered to have the
HQ's root value as its maximal allowed generalization value.

Definition 6 (Constraint Violation). We say that the masked microdata MM has
a constraint violation if one quasi-identifier value, x4 in 1M, is generalized in
one tuple in MM beyond its specific maximal generalization value, MAGVal(u).

Definition 7 (Constrained P-Sensitive K-Anonymity). The masked microdata
MM satisfies the constrained p-sensitive k-anonymity property if it satisfies p-
sensitive k-anonymity and it does not have any constraint violation.

Consider the following example. The initial microdata set /9% in Table 1 is
characterized by the following attributes: Name is an identifier attribute (to be
removed from the masked microdata), Marital-Status, Gender, and Age are the
quasi-identifier attributes, and Diagnosis is the sensitive attribute. The attribute
Age’s values and their MAGVals are described by Figure 2 c). The remaining
quasi-identifier ~attributes do not have any generalization boundary
requirements; their value generalization hierarchies are illustrated in Figure 2 a)
and b). This microdata set has to be masked such that the corresponding
masked microdata will satisfy constrained 2-sensitive 3-anonymity.

Figure 2. Hierarchies for the quasi-identifier attributes Gender (a), Marital-Status (b)

and Age (c).
Person Marital-Status
A A N NN
Female Male Single Divorced Married
0-100
/ 4\ \ C)
*0-19* 20-59 60-100

AN _— KNS X

0-9 10-19  *20-29*  *30-39*  *40-49*  *50-59*  *60-69*  *70-100*

0 1 100

Tables 2, 3, and 4 illustrate three possible masked microdata Man, MM, and
MM for the initial microdata /. The first one, M, satisfies 3-anonymity, but it
is not p-sensitive 3-anonymous, for any p, p 22. This is because the second QI-
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cluster (X2, Xe, X7) has no diversity in the Diagnosis attribute. Therefore, an in-
truder looking for information about a woman in her 30s can find out easily that
his/her target has flu. MM 2 is 2-sensitive 3-anonymous, but it contains several
constraint violations with respect to Age attribute’s maximal allowed generaliza-
tion. On the other hand, the third microdata set, MM s, satisfies constrained 2-
sensitive 3-anonymity: every QI-cluster consists of 3 tuples, it has at least 2 dif-
ferent Diagnosis values and none of the Age’s initial values is generalized
beyond its MAGVal.

Record Name Marital-Status ~ Gender Age Diagnosis
X1 Bob Married Male 37 Cancer
X2 Nancy Married Female 30 Flu
X3 James Married Male 36 HIV
Xa Carol Single Female 43 Cancer
Xs William Single Male 45 Flu
Xe Heidi Single Female 37 Flu
X7 Cindy Single Female 32 Flu
Xs Michael Married Male 30 Diabetes
Xo David Divorced Female 41 Diabetes

Table 1. An M dataset

Records Marital-Status Gender Age Diagnosis
X1, X3, Xs Married Male 30-39 Cancer, HIV, Diabetes
X2, Xe, X7 Mar.-Status Female 30-39 Flu, Flu, Flu

X4, X5, Xo Mar.-Status Person 40-49 Cancer, Flu, Diabetes

Table 2. Masked microdata MM: for 1M

Records Marital-Status ~ Gender Age Diagnosis
X1, X3, Xs Married Male 30-39 Cancer, HIV, Diabetes
X4, X5, X6 Single Person 20-59 Cancer, Flu, Flu
X2, X7, X9 Mar.-Status Female 20-59 Flu, Flu, Diabetes

Table 3. Masked microdata MM: for M
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Records Marital-Status ~ Gender Age Diagnosis
X1, X2, Xs Married Person 30-39 Cancer, Flu, Diabetes
Xz, Xe, X7 Mar.-Status Person  30-39 HIV, Fly, Flu
X4, X5, Xo Mar.-Status Person 40-49 Cancer, Flu, Diabetes

Table 4. Masked microdata MMs for IM

3 Algorithm

We present in this section a necessary condition for a microdata set to be ame-
nable to constrained p-sensitive k-anonymity, given the generalization con-
straints for its quasi-identifier attributes, expressed as MAGVals in their corres-
ponding hierarchies, and specific p and k values. We provide next an algorithm
for masking a microdata set to p-sensitive k-anonymity while staying within the
bounds imposed by generalization constraints and attempting to minimize the
information loss caused by generalization and suppression (the two procedures
employed in the anonymization algorithm).

Our approach to constrained p-sensitive k-anonymization partially follows an
idea found in [1] and [3], which consists in modeling and solving
anonymization as a clustering problem. Basically, the algorithm takes an initial
microdata set /M and establishes a “good” partitioning of it into clusters. The
released microdata set MM is afterwards formed by generalizing the quasi-
identifier attributes” values of all tuples inside each cluster to the same values
(called generalization information for a cluster).

Definition 8 (Generalization Information). Let cl = {X1, Xz, ..., Xu} be a cluster of
tuples selected from 1M, QI = {Qi, Q2 .., Qi be the set of quasi-identifier
attributes. The generalization information of cl with respect to the quasi-
identifier attribute set QI is the “tuple” gen(cl), having the scheme QI, where for
each attribute Qj € QI, gen(c)[Qj] = the lowest common ancestor in H#oj of { X1[Qj],

Xo[Ql, .y Xa[ Qi)

The generalization information for a cluster cl is the “tuple” whose value for
each quasi-identifier attribute is the most specific common ancestor (in the
attribute’s value generalization hierarchy) of all that attribute’s values in all
tuples in cl. In the corresponding M, each tuple from the cluster cI will have its
quasi-identifier attributes values replaced by gen(cl).
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The following is a necessary and sufficient condition for the anonymization of
a cluster not to create constraint violations.

Property 1. Let I be a microdata set and cl a cluster of tuples from /M. The
generalization of the tuples from cl to gen(cl) will not create any constraint
violation if and only if MAGVal(Xi[Q]) = MAGVal(X;[Q]), for any two tuples Xi
and Xj from cl and any quasi-identifier attribute Q.

Proof.

“It”: If MAGVal(Xi[Q]) = MAGVal(Xj[Q]) for any two tuples Xi and X from cl
and any quasi-identifier attribute Q, then MAGVal(Xi[Q]) is a common ancestor
for all elements of the set {X.[Q] | for all Xu e cl}. Using Definition 8,
MAGVal(Xi[Q]) is equal to or is an ancestor of gen(c/)[Q], which means that
there are no constraint violations for the generalization of attribute Q’s values
from the cluster cl.

“Only If”: Assume that there are two tuples Xi and X; within cI such that
MAGVal(Xi[Q]) # MAGVal(Xj[Q]), where Xi[Q], Xj[Q] € leaves(Ha) (leaves(Hq)
represents all the leaves from the #o value generalization hierarchy). Let a be a
value within 7o that is the first common ancestor for MAGVal(X{[Q]) and
MAGVal(Xj[Q]). As a result, a will be different from, and an ancestor for at least
one of MAGVal(Xi[Q])or MAGVal(Xj[Q]). This is a consequence of the fact that
MAGVal(Xi[Q]) # MAGVal(Xj[Q]): a common ancestor of two different nodes x
and y in a tree is a node which is different from at least one of the nodes x and
y. Because of this fact, when cI will be generalized to gen(cl), gen(cl)[Q] will be a
(or depending on the other tuples in cl, even an ancestor of a) — therefore at least
one of the values Xi[Q] and Xj[Q] will be generalized further than its maximal
allowed generalization value, leading to a constraint violation. // q.e.d.

The logical consequence of Property 1 is that a microdata set /¢ cannot always
be anonymized using generalization only, given certain generalization
constraints, and specific p and k values. As shown next, there exists a minimal
set of tuples from IM which must be suppressed so that it is possible to build a
constrained p-sensitive k-anonymous masked microdata for the remaining
tuples. The following definition introduces a microdata concept that will help us
express when IM can be transformed to satisfy constrained p-sensitive k-
anonymity using generalization only.

Definition 9 Maximum Allowed Microdata). The maximum allowed
microdata for a microdata IM, MAM, is the masked microdata where every
quasi-identifier value, x4, in IM is generalized to MAGVal ().
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Property 2. For a given I, if its maximum allowed microdata MAM is not p-
sensitive k-anonymous, then any masked microdata obtained from 1M by
applying generalization only will not satisfy constrained p-sensitive k-
anonymity.

Proof. Assume that MAM is not p-sensitive k-anonymous, and there is a masked
microdata MM that satisfies constrained p-sensitive k-anonymity. This means
that every QI-cluster from MM has at least k elements, it has at least p distinct
values for every quasi-identifier attribute, and it does not have any constraint
violation. Let cli be a cluster of elements from /9 that is generalized to a QI-
cluster in MM (i = 1, .., v). Because MM satisfies constrained p-sensitive k-
anonymity, the generalization of tuples in cli to gen(cl) does not create any
constraint violation. Based on Property 1, for each quasi-identifier attribute, all
entities from cli share the same MAGVals. As a consequence, by generalizing all
quasi-identifier attributes values to their corresponding MAGVals (this is the
procedure to create the MAM microdata) all entities from the cluster cli (for all i =
1, .., v) will be contained within the same QI-cluster of M4AM. This means that
each QI-cluster in MAM contains one or more QI-clusters from MM and its size
will, then, be at least k and the number of distinct values for every quasi-
identifier attribute will be at least p. In conclusion, MAM is p-sensitive k-
anonymous, which is a contradiction with our initial assumption. // q.e.d.

Property 3. If MAM satisfies p-sensitive k-anonymity then MAM satisfies the
constrained p-sensitive k-anonymity property.

Proof. This follows from the definition of MAM.

Property 4. An initial microdata, /M, can be masked to comply with constrained
p-sensitive k-anonymity wusing only generalization if and only if its
corresponding MAM satisfies p-sensitive k-anonymity.

Proof.

“If”: If MAM satisties p-sensitive k-anonymity, then based on Property 3, MAM is
also constrained p-sensitive k-anonymous, and I can be masked to MAM (in
the worst case — or even to a less generalized masked microdata) to comply with
constrained p-sensitive k-anonymity.

“Only If”: If MAM does not satisfy p-sensitive k-anonymity, then based on
Property 2, any masked microdata obtained by applying generalization only to
IM will not satisfy constrained p-sensitive k-anonymity. // q.e.d.
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It is very likely that there are some QI-clusters in MAM with size less than k or
with less than p distinct values for a sensitive attribute. The entities belonging to
these clusters cannot be masked to p-sensitive k-anonymity while preserving the
constraint conditions, as shown by Property 6. We will use the notation 0UTto
represent these entities (for simplicity we use the same notation to refer to
entities from both M and MAM). For a given /M with its corresponding MAM
and OUT sets the following two properties hold.

Property 5. IM — OUT can be masked using generalization only to comply with
constrained p-sensitive k-anonymity.

Proof. By definition of the OUT set, all QI-clusters from MAM \ OUT have size k
or more and any such cluster will have p distinct values for each quasi-identifier
attribute, which means that M4M \ OUT satisfies the p-sensitive k-anonymity
property. Based on Property 4 (MAM \ OUT is the maximum allowed microdata
for M \ OUT), IM \ OUT can be masked using generalization only to comply
with constrained p-sensitive k-anonymity. // q.e.d.

Property 6. Any subset of I that contains one or more entities from OUT
cannot be masked using generalization only to achieve constrained p-sensitive
k-anonymity.

Proof. We assume that there is an initial microdata /M’ a subset of IM, that
contains one or more entities from OUZ, and /M’ can be masked using
generalization only to comply with constrained p-sensitive k-anonymity. Let x
OUT N IM'. Let MAM’ be the maximum allowed microdata for /M’ Based on
Property 4, if IM’ can be masked to be constrained p-sensitive k-anonymous,
then MAM’ is p-sensitive k-anonymous, therefore x will belong to a QI-cluster
with size at least k and with p distinct values for every quasi-identifier attribute.
By construction MAM’ is a subset of MAM, and therefore, the size of each QI-
cluster from MAM is equal to or greater than the size of the corresponding QI-
cluster from MAM’. This means that x will belong to a QI-cluster with size at
least k and with p distinct values for every quasi-identifier attribute in the M aM.
This is a contradiction with x € OUT. // q.e.d.

Properties 5 and 6 show that OUT is the minimal tuple set that must be
suppressed from /M such that the remaining set could be constrained p-sensitive
k-anonymized. To compute a constrained p-sensitive k-anonymous masked
microdata we apply the following steps. First, we suppress all tuples from the
OUT set. Next, we create all QI-clusters in the maximum allowed microdata for
IM — OUT. Last, each such cluster will be divided further, if possible, using the
clustering approach from [1], [3], and [4], into several clusters, all with size
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greater than or equal to k and with p or more distinct values for every sensitive
attribute. This approach uses a greedy technique that tries to optimize an
information loss (IL) measure and a diversity measure.

At this moment there are several information loss measures in the literature
such as the discernability metric [2], the normalized average cluster size metric
[15], the utility assessment metrics [8], the information-theoretic measure of util-
ity [11], and several variants of the information loss metric [3, 8, 29]. Any of the
above measures could be used in our algorithm.

The information loss measure we choose to use in our algorithm
implementation was introduced in [3]. We present it in Definition 10. We extend
this measure, first, by computing the total information loss for a partition into
clusters of the initial microdata set and, next, by normalizing it to the interval [0,
1] (see Definition 11). Note that this IL definition assumes that value
generalization hierarchies are predefined for all quasi-identifier attributes.

Definition 10 (Cluster Information Loss). Let cl be a cluster of tuples from 1,
gen(cl) its generalization information and QI = {Q1, Q2, .., Q4 the set of quasi-
identifier attributes. The cluster information loss caused by generalizing cl
tuples to gen(cl) is:

¢ height (A (gen(eD[@;]))

IL(cl) = |cl| Z

= height (HQj)

)
where:

* [cll denotes the cI cluster’s cardinality;

* A(n), ue Hojis the subhierarchy of #Hoj rooted in 1

* height(Hoj) denotes the height of the tree hierarchy #o;
* tis the number of quasi-identifier attributes.

Definition 11 (Normalized Total Information Loss). The normalized total
information loss for a partition into clusters, S, of the initial microdata set is the
sum of the information loss for all clusters in § divided to the number of tuples
from 1M times the number of quasi-identifier attributes. Formally:

YvHIL(cl;
NTIL(IM,S) = g
n-t
where:
* 1 is the number of tuples from I9%;

* tis the number of quasi-identifier attributes;
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* v+ 1 is the number or clusters from . The solution § contain v clusters that
are kept in the % and one cluster (cl+1) that contains all entities from OUT
which are suppressed from the M.

It is worth noting that the cluster of tuples to be suppressed, cl.+1, will have the
maximum possible IL value for a cluster of the same size as cl.+1. The informa-
tion loss for this cluster will be: IL(cl1) = |clw1l-t. When performing experi-
ments (see Section 4) the information loss of the constrained anonymization
solutions includes the information loss caused by the suppressed cluster as well,
and not only for the generalized clusters. This way, the quality of the con-
strained p-sensitive k-anonymous solutions will not be biased because of a fa-
vored way of computing information loss for the suppressed tuples.

The cluster diversity measure, presented next, quantifies the heterogeneity de-
gree of a cluster’s tuples with respect to the sensitive attributes [4].

Let X i, i = 1..n, be the tuples from /M subject to p-sensitive k-anonymization.
We denote an individual tuple as X; ={k} kb ,...k},s},s5,...,s'}, where ks are
the values for the quasi-identifier attributes and s‘s are the values for the sensi-
tive attributes.

Definition 12 (Diversity of Two Tuples). The diversity of two tuples, X i and X;
w.r.t. the sensitive attributes is given by:

-
diversity(Xi,Xj) = Z wy S(Sf,slj),
=1
where:
. 6(5{,5{) _ 1,%fs{. + sl]' ;
0,if s} = s/
» ris the number of sensitive attributes;
= Yi—1w; =1 are the weights of the sensitive attributes.

The data owner can choose different criteria to define this weights vector. One
good selection of the weight values is to initialize them as inversely proportion-
al to the number of distinct sensitive attribute values in the microdata 7.
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Definition 13 (Diversity between a tuple and a cluster). The diversity between a
tuple X i and a cluster cl is given by

-
diversity(X;, cl) = Z wy - 6(5}, cly),
=1

where:

]

. 5(5{, cll) _ {1, if slildoes not exist between the §; values in cl .
0, if s{exists between the S; values in cl

= ris the number of sensitive attributes;

» the weights w;, Y.]_; w; = 1, have the same meaning as in Definition 12.

The two stage constrained p-sensitive k-anonymization algorithm called Gree-
dyCPKA is depicted in Figure 3. The numbers correspond to different values of a
sensitive attribute — we only consider one to make the process explainable
graphically. The different geometrical shapes indicate tuples that belong to the
same MAM cluster. In the first step, the M4 is formed. In the second step, a p-
sensitive k-anonymization algorithm is applied on every MAM cluster with more
than k entities and p distinct values for each sensitive attribute. In this last step,
the MAM clusters that have less than k entities or less than p distinct values for
each sensitive attribute are suppressed. The suppressed entities form the set
OUT.

Figure 3. The two-stage process in creating constrained p-sensitive k-anonymous
masked microdata.
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We present next the pseudocode of the GreedyCPKA Algorithm.
Algorithm GreedyCPKA is
Input ¢ — initial microdata set;
p, kK — as in p-sensitive k-anonymity;
generalization boundaries;
Output s={cl,cl,,..,cl,,cly.i};
v +1 — -
=1 cl j = IM;
cli ncly = O, i1,J = 1..v+l, izj; |cljl=k, clj is p-
sensitive for every sensitive attribute, generalizing cl;
doesn’t produce constraint violations, j=1..v (i.e. &
{cl,.1} is a set of clusters that ensure constrained p-

sensitive k-anonymity, cl,.; is suppressed);

Compute MAam and OUT;

S = J;

For each cl € mam - oUT do
// By cl we refer to the entities from v
// that are clustered together In MAM.
S” = GreedyPKClustering(cl, p, k);
S=S5SuUS;

End For;

v=1S$1;

cly.1 = OUT;

End GreedyCPKA.

Function GreedyPKClustering(uM, p, k)

S=0; 1 =1;

Xseea = @ randomly selected tuple from 1;

Repeat
cl; = T;
Xseeq = One tuple from argmax diversity (Xgeeq-X ) >

X Eeim

// one of the most diverse tuples € M w.r.t. old Xseeq
cli = cli U {Xseed}s
IM = IM - {Xseed};
Repeat

Temp =argmax diversity(X,cl;);
X €1

X" = one tuple from argmin IL(X,cl;);
X €Temp
// one tuple within the most diverse tuples w.r.t. cl;
// that produce the minimal IL growth when added to cl;
Cli = Cli U {X*};
M= 1M - {X};
until (cl; is p-sensitive) or (ImM = O);
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IT (Jcli] < k) and (im = &) then
Repeat
X" = one tuple fromargmin ILCcl; U {3})
X 1M
cl; = cl; U {X'};
M= IM - {X'};
Until (cl; is k-anonymous) or (M = &);
End IT;
IT (Jcli] 2 k and cl; is p-sensitive) then
s =5 v {cli};
i++;
Else
DisperseCluster(s, cl;);
// only last cluster can be dispersed

End If;
until v = O;
Return §;

End GreedyPKClustering.

Function DisperseCluster(s, cl)

For each X e cl do
cl” = FindBestCluster(X, $);
cl” = cl” U {X};
End For;
End DisperseCluster.

Function FindBestCluster(X, ) is
bestCluster = null;
infoLoss = oo;
For each clj € § do
IT IL(cl; v {X}) < infoLoss then
infoLoss = IL(cl; v {X});
bestCluster = clj;
End IF;
End For;
Return bestCluster;
End FindBestCluster.

4 Experimental Results

In this section we compare the GreedyCPKA (generates constrained p-sensitive k-
anonymous masked microdata), GreedyCKA (generates constrained k-
anonymous masked microdata) [23] and GreedyPKClustering (generates uncon-
strained p-sensitive k-anonymous masked microdata) [4] algorithms, from dif-
ferent perspectives:
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* The quality of the results they produce measured according to the norma-
lized total information loss metric;

* The algorithms’ efficiency as expressed by their running time;

* The number of constraint violations that p-sensitive k-anonymous masked
microdata produced by GreedyPKClustering have; and,

* The suppression amount performed by GreedyCPKA in order to produce
constrained p-sensitive k-anonymous microdata in the presence of con-
straints.

The algorithms were implemented in Java, and tests were executed on a dual

CPU machine with 3.0 GHz and 4 GB of RAM.

The experiments were performed on the Adult dataset from the UC Irvine Ma-
chine Learning Repository [25] consisting of 45222 tuples. In all the experiments
we considered a set of six quasi-identifier attributes: age, workclass, marit-
al_status, race, sex, and native_country, and a set of three sensitive attributes: edu-
cation_num, education, and occupation. The three algorithms were applied to this
microdata set for k=4, 8, 10 and 20 and p=2, 3, 4, 6, 8, 10, and 13 (only when p is
less or equal to k). The sensitive attribute weights were set in all experiments to
0.3 (for education and education_num) and 0.4 (for occupation). The weights are
used for assessing the diversity with respect to sensitive attributes between
tuples and clusters (see Definitions 12 and 13).

We considered generalization boundaries for the age and native_country quasi-
identifiers. The value hierarchy and the MAGVals for age are as presented by
Figure 2c); native_country has a 4-level constrained hierarchy (see Figure 4). The
quasi-identifier attributes without constraint boundaries have the following
heights for their generalization hierarchies: workclass-1, sex-1, race-1, and marit-
al_status-2.

Figure 4. MAGVals for the quasi-identifier attribute native_country.
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The experiments we performed show that information loss is higher when p-
sensitive k-anonymity (constrained or not) is enforced on a dataset compared to
when the dataset is masked according to k-anonymity only (Figure 5). Of
course, this is a result to be expected, as there is always a tradeoff between pre-
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serving data utility and protecting it with a more powerful anonymity model.
On the other hand, Figure 5 also proves that the information loss does not de-
grade significantly when constraints are incorporated into p-sensitive k-
anonymity: GreedyCPKA and GreedyPKClustering perform similarly with respect
to information loss.

Figure 5. Normalized Total Information Loss (NTIL) for GreedyCPKA,
GreedyPKClustering, and GreedyCKA.
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Figure 6. Running Time for GreedyCPKA, GreedyPKClustering, and GreedyCKA.
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Our results show that GreedyCPKA and GreedyCKA perform equally efficiently
on all p and k values, including high values, where GreedyPKClustering slows
down significantly (Figure 6).

When the unconstrained GreedyPKClustering is applied to anonymize I%, the
resulting masked microdata usually contains numerous constraint violations.
Table 5 reports the number of constraint violations in some outcomes of Gree-
dyPKClustering. Also, GreedyCKA alone will obviously produce constrained k-
anonymous masked microdata that is very likely to not meet the p-sensitivity
criterion and, therefore, it will allow attribute disclosures.
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k p # constraint violations
4 2 3958
4 3 6286
4 4 12743
8 2 7260
8 3 7766
8 4 10836
8 6 21213
8 8 27017
10 2 8686
10 3 9164
10 4 11345
10 6 22853
10 8 27882
10 10 36073
20 2 13990
20 3 14171
20 4 14896
20 6 26893
20 8 36437
20 10 43058
20 13 61391

Table 5. Constraint violations in GreedyPKClustering outcomes

Our experiments also show that the number of suppressed tuples increases as
k and p values increase. This is a result of having MAM-clusters with few tuples
(not achieving k) or low diversity (not achieving p). Table 6 summarizes the
number of suppressed tuples for both GreedyCPKA and GreedyCKA algorithms.
It is worth noting that this number is low compared with total number of tuples
(45,222).
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k p # suppressed tuples  # suppressed tuples
(GreedyCPKA) (GreedyCKA)

4 2 11 11
4 3 17 11
4 4 38 11
8 2 42 42
8 3 42 42
8 4 52 42
8 6 127 42
8 8 358 42
10 2 51 51
10 3 51 51
10 4 61 51
10 6 136 51
10 8 358 51
10 10 463 51
20 2 162 162
20 3 162 162
20 4 162 162
20 6 192 162
20 8 370 162
20 10 463 162
20 13 1593 162

Table 6. Suppressed tuples in GreedyCPKA and GreedyCKA outcomes

5 Related Work

The anonymization problem for microdata was widely studied in the research
literature [1, 2, 3, 14, 15, 26, 27, 28]. Many anonymization models that protect
confidential information were proposed [7, 16, 21, 22, 29, 31, 32, 33, 35, 26].
Depending on specific model, heuristic or optimal anonymization algorithms
were introduced. So far, the research community focused on minimizing a
measure of information loss while guaranteeing the privacy requirements. This
problem is called the privacy-constrained anonymization problem [10]. This may
lead to distorting the data such that it becames unusable to research users. To
prevent this situation a new approach was long due, the utility/information loss
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constraints must be specified prior to the anonymization process and the
privacy requirements (usually an anonymity model) must be enforced within
the given constraints.

The first paper that considered this approach was [23]. In this paper the
constrained k-anonymity, a privacy model that preserves the k-anonymity
requirement while specifying quasi-identifiers generalization boundaries (or
limits), was introduced. The downfall of this model is that it does not protect
against attribute disclosure [13]. The current paper addresses this issue by in-
corporating both generalization constraints and a privacy model that protects
against attribute disclosure.

Concurrently, Loukides, Tziatzios, and Shao introduced the preference-
constrained k-anonymization [19]. They allow data owners to specify usage re-
quirements as a set of preferences on attributes or data values (in other words
forming a set of constraints) and solve the anonymization problem as a multi-
objective optimization problem. There are two types of constraints defined in
this work: the attribute level preference and the value-level preference. The attribute-
level preference is similar to defining all MAGVals at the same level in the value
generalization hierarchy tree; the value-level preference resembles the con-
straints definition from this paper. This paper also defines preferences for nu-
merical attributes in terms of ranges. An important difference between [19] and
the current paper is again the selection of the privacy model (k-anonymity ver-
sus a model that protects against both identity and attribute disclosure).

Constraints that limit the amount of distortion for transaction anonymization
are introduced by Loukides, Gkoulalas-Divanis, and Malin [20]. In this paper,
the authors focus on both privacy and utility constraints in the context of trans-
actions. The authors argue the importance of including utility constraints from
the early stages in the anonymization process. This paper focuses on a different
data model (transactional data) and only on k-anonymity.

Recently, Ghinita, Karras, and Kalinis introduced the accuracy-constrained ano-
nymization problem [10]. This problem finds the maximum degree of privacy
(for either k-anonymity or [-diversity) that can be achieved such that the infor-
mation loss (the definition of IL can vary) does not exceed a threshold E. This
work is related to the one presented in this paper since it is the only other work
that discusses the utility constraints in the context of an anonymization model
that protects against attribute disclosure. The main difference between their
work and ours resides in the way in which constraints are enforced. We see
these constraints as dependent on individual values, and this is why we asso-
ciate MAGVals to each possible value for a constrained quasi-identifier attribute.
In [10], the constraints are global in terms of a general information loss measure.
This limits the flexibility in defining useful value-based constraints.
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In a preliminary two-page version of this paper, Campan, Truta, and Cooper
[5] first introduced constrained p-sensitive k-anonymity. Compared to its pre-
liminary version, the current paper presents the complete theoretical framework
for this new model, the description of the GreedyCPKA Algorithm, and an array
of experimental results.

The research papers that include utility constraints in the process of anonymi-
zation are in general complementary; there are differences in how these con-
straints are defined and what anonymization model is used. Our approach in-
corporates a very practical set of constraints (generalization boundaries) with a
privacy model that protects against both identity disclosure and attribute dis-
closure.

6 Conclusions

In this paper we presented a new privacy model that protects against both iden-
tity and attribute disclosure while keeping the quasi-identifiers generalization
restricted to certain user-specified boundaries. We also introduced a greedy
algorithm that will generate a masked microdata which will conform to the new
privacy model. The experiments show that the proposed algorithm is compara-
ble with existing algorithms used for generating p-sensitive k-anonymity with
respect to the results’ quality, and the obtained masked microdata complies
with the generalization boundaries as indicated by the user. A last remark needs
to be made: the concept of constrained anonymity can certainly be translated
from p-sensitive k-anonymity to other models such as [-diversity, t-closeness,
etc. that are derived from k-anonymity.
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