
TRANSACTIONS ON DATA PRIVACY 6 (2013) 199–226

Efficient Tree Pattern Queries On Encrypted
XML Documents

Fang-Yu Rao1, Jianneng Cao2, Mehmet Kuzu3, Elisa Bertino1,
Murat Kantarcioglu3

1Department of Computer Science/CERIAS, Purdue University, West Lafayette, IN 47906 USA.

2Institute for Infocomm Research, 1 Fusionopolis Way, Singapore 138632.

3Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080 USA.

Abstract. Outsourcing XML documents is a challenging task, because it encrypts the documents,
while still requiring efficient query processing. Past approaches on this topic either leak structural
information or fail to support searching that has constraints on XML node content. To address these
problems, we present a solution for efficient evaluation of tree pattern queries (TPQs) on encrypted
XML documents. We create a domain hierarchy, such that each XML document can be embedded in
it. By assigning each node in the hierarchy a position, we create for each document a vector, which
encodes both the structural and textual information about the document. Similarly, a vector is cre-
ated also for a TPQ. Then, the matching between a TPQ and a document is reduced to calculating
the distance between their vectors. For the sake of privacy, such vectors are encrypted before be-
ing outsourced. To improve the matching efficiency, we use a k-d tree to partition the vectors into
non-overlapping subsets, such that non-matchable documents are pruned as early as possible. The
extensive evaluation shows that our solution is efficient and scalable to large dataset.

1 Introduction

Since Kodak signed a $1 billion contract with IBM, DEC, and Businessland [12] in 1989
to outsource its information system, data outsourcing has gained a widespread interest.
Outsourcing is beneficial to the data owners. It helps to save the cost of building and
maintaining a private database system, and thus allows data owners to focus on their core
competencies. Recently, due to the advances in networking and computing technology,
the cloud has emerged as a technology that can provide reliable and flexible data access
service at a relatively low price. Therefore, data owners are even more likely to outsource
their data. However, despite all the appealing features, moving data to a cloud server may
endanger individual privacy, since data may contain sensitive information (e.g., medical
records). To address such concerns, the data is usually encrypted prior to its outsourcing,
which makes efficient query processing very challenging.
An XML document organizes data in a hierarchy and describes semantic relationships

among data elements by user-defined tags. An XML document thus contains both struc-
tural and textual information. In order to achieve strong privacy, it is important that both
types of information are encrypted. In the last decade, query processing on encrypted data
has been heavily investigated. However, most of the works are proposed for relational data

199

200 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

[15, 16, 29, 33]; they do not have a support for searching on encrypted structures. Recently,
query processing over encrypted XML documents [7, 34] has been investigated. However,
these approaches either leak structural information [34] or fail to support searches that have
constraints on node contents [7] (see Section 7 for details).

In this paper we consider tree pattern query (TPQ) [8, 28] over encrypted XML docu-
ments. A TPQ is a tree, which consists of labeled nodes and predicates that specify the
constraints on the nodes. TPQ is a core operation of XQuery [3], which is now the de facto
standard of XML query processing language. We propose a novel solution to evaluate TPQ
on encrypted XML document. The key contribution is that we transform the tree pattern
matching to a problem of vector comparison. We assume the existence of a domain hierar-
chy, which is composed of the document type definitions (DTDs) of all the XML documents
in the dataset. Each document is an embedding in the hierarchy. By assigning each node
in the hierarchy a position, we create for each document a vector, which encodes both the
structural and textual information of the document. Similarly, we create a vector also for a
TPQ. Thus, the matching of a TPQ with an XML document is reduced to calculating the dis-
tance between their vector representations. The generated vectors are encrypted via ASPE
[35], which ensures privacy and at the same time supports distance evaluation (i.e., KNN
search) on encrypted vectors.

Furthermore, we build a privacy-preserving indexing to improve the efficiency of our
scheme. We apply a k-d tree to hierarchically partition the XML documents, so that irrel-
evant XML documents to a TPQ are pruned as early as possible. The k-d tree hierarchy
may contain sensitive information about the data. Therefore, we adopt privacy metrics to
guide the construction of the k-d tree, so that the disclosure of sensitive information is ef-
fectively controlled. Compared with existing approaches [7, 34], our solution protects both
the structure and content of XML documents, while supporting query processing on them.
We have also carried out extensive experiments, whose results confirm that our solution is
efficient and scalable to large datasets.

The rest of our paper is organized as follows. The next section first formulates the prob-
lem. Then, we present our approach in Section 3, and improve its efficiency in Section 4.
We discuss our approach in Section 5. Section 6 reports our experimental results. Finally,
we review related work in Section 7 and conclude our work in Section 8.

2 Problem Formulation

We model an XML document as a labeled rooted tree. Each node in the tree has a name. A
node is either an element or an attribute. A leaf element and an attribute may have content,
which is either a string or a numerical value.

In our setting there are three roles: data user Alice, data owner Bob, and cloud server
Charlie. We assume that Bob has a set of XML documents that contain sensitive informa-
tion, and that he wants to outsource them to the cloud server Charlie. To assure confiden-
tiality, data is stored in an encrypted form at Charlie. Authorized data user Alice should
be able to selectively retrieve XML documents from Charlie through TPQs (see Definition
2 below). For the sake of query privacy, the TPQs are also encrypted. The server should
be able to evaluate the encrypted TPQs, and return those encrypted documents that sat-
isfy the constraints specified in the TPQs. Once receiving the query results, Alice decrypts
them and obtains the desired documents in plaintext. Furthermore, we assume that Charlie
is semi-honest, i.e., he strictly follows the query processing protocol as it is defined but he

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 201

may try to infer private information from the query evaluation.

Tree pattern query. XQuery [3] is the currently de facto standard of XML query processing
language. Due to its complexity, fully supporting it is beyond the scope of our work. In-
stead, we consider tree pattern query (TPQ) [8], one of its core operators. TPQ has a wide
range of applications–besides XML query processing, it can also be applied to web data
management and selective data dissemination. TPQ is compatible with the semantics of
XPath [2]. Its formal definition is as follows.

Definition 1 (Tree pattern). A tree pattern is a tree, such that 1) each of its nodes has a name,
and 2) each of its edges is either a single edge representing parent-child (PC) relationship
or a double edge representing ancestor-descendant (AD) relationship.

Definition 2 (Tree pattern query). A tree pattern query is a pair (Qt, Qc), where Qt is a tree
pattern and Qc is a boolean combination of predicates defined on the nodes of Qt.

We support two kinds of predicates. The first is content predicate in the form of [x op α],
where x represents the content of a node , op ∈ {>,≥, <,≤,=}, and α is a value. It selects
nodes whose content values satisfy the predicate. As in XPath, we denote the content of a
node by its node name. The second is position predicate in the form of [position() = m]. It
selects the m-th child node of the current context node.

a

d o

j [j = “Eve”]

a

d

j [position() = 2]

(a) Content Predicate (b) Position Predicate

Figure 1: Two Types of Predicates

Figure 1(a) shows an example of a TPQ, in which a and d (d and j) are connected by
a PC relationship, a and o are connected by an AD relationship, and the content of j
is required to be equal to “Eve”. Since TPQ follows the semantics of XPath, the exam-
ple TPQ is also equal to the combination of the following two XPath queries: Path1 =
/child :: a/child :: d/child :: j[j = “Eve”] and Path2 = /child :: a/descendant :: o.
Figure 1(b) shows an example of a TPQ with a position predicate in which the 2nd child of
d with node name j should be chosen.

3 The Solution

In this section, we present our approach of evaluating TPQs over encrypted XML doc-
uments. In Section 3.1, we will first present a strategy to encode XML documents (and
TPQs) into vectors. Then, in Section 3.2, we adapt an encryption scheme to our specific
requirements. Based on the first two sections, Section 3.3 gives the details of our approach.

3.1 Encoding XML Documents into Vectors

We create vectors for XML documents. Since such vectors encode both the structural and
textual information about the documents, they can be regarded as indices for efficient query
processing. To generate the vectors, we assume that all the XML documents in the data-
base are constructed according to their Document Type Definitions (DTDs). We construct

TRANSACTIONS ON DATA PRIVACY 6 (2013)

202 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

· · ·

0

1 2 3

1.1 1.2

2.1 2.32.2

1.1.1
1.1.2 1.2.1 1.2.2

1.1.1.1 1.1.1.2

root

2.3.1 2.3.2

a b c

h gf

p s

e

ok

d

ji

u w

Figure 2: An Example of Domain Hierarchy

a domain hierarchy by appending a root node over all the DTDs. Consider the example in
Figure 2, in which the subtrees rooted at nodes a, b, and c represent three DTDs. An XML
document can be seen as a subset in the domain hierarchy, or more precisely, an embedding
(see the next definition) of the domain hierarchy.

Definition 3 (Tree embedding [18]). Let T and T ′ be trees with sets of nodes V and V ′,
respectively. An injective function f : V → V ′ is an embedding of T into T ′, if for all the
nodes x, y ∈ V :

• label(f(x)) = label(x), where label(f(x)) and label(x) are the labels of f(x) and x in
trees T ′ and T , respectively,

• f(x) is a descendant of f(y) in T ′ if and only if x is a descendant of y in T .

According to a DTD, some elements (e.g., the author of a book) are allowed to appear
multiple times in an XML document. To ensure that each XML document is an embedding
in the domain hierarchy, we duplicate certain nodes in the domain hierarchy. As an exam-
ple, consider Figure 2. Suppose that node j represents the author name of a book, and that
M is the maximum number of authors for a book in the dataset1. Then, we duplicate j M
times under node d in the domain hierarchy (see Section 5 for a more detailed discussion).
On the other hand, we note that the recursion of elements in a DTD is also supported in
our solution after the depth of the recursion is determined beforehand.
Once the domain hierarchy is ready, we utilize Dewey labeling2 scheme [36] to label the

domain hierarchy. Let p and c be two nodes with Dewey labels a1.a2 . . . am and b1.b2 . . . bn,
respectively. If p is the parent of c, then ai = bi (i = 1, 2, . . . ,m) and n = m + 1. The
last component bn for node c denotes the local order of c among its siblings. Consider
the example in Figure 2, in which each subtree under the root node is labeled by Dewey
labeling. Based on such labeling on the domain hierarchy, an XML document can be labeled
accordingly. Figure 3(a) shows an example XML document together with its Dewey labels.
A TPQ can be considered as a tree, and thus can also be labeled. The example in Figure 3(b)
is one possible labeling of the TPQ in Figure 1(a). A TPQ may have multiple embeddings
in the domain hierarchy, thus it may have more than one encoding (refer to Section 5 for
more details).
All the Dewey labels in the domain hierarchy, denoted as U , can be regarded as a universal

set. Correspondingly, the set of Dewey labels in an XML document (or a TPQ) can then be

1For dynamic data settings, we may increase M to M ′ = M + x so that M ′ can be a safe upperbound for the
number of authors in a book.

2Other labeling schemes like containment scheme and pre/post labeling scheme are also applicable. We choose
Dewey labeling because it intuitively encodes AD/PC relationship.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 203

a

d e

i j

1

1.1 1.2

1.1.1 1.1.2

o

1.2.2

a

d o

1

1.1 1.2.2

j

1.1.2

[j = “Eve”]

(a) An XML Document (b) A TPQ

Figure 3: The Dewey Labels of a Document/TPQ

regarded as a subset of U . If we further order3 the labels in U , then we can transform
the structure of a document (or TPQ) into a binary vector. To be formal, let X be the set
of Dewey labels for a document (or TPQ) such that X ⊆ U . Let pos(x) be the order of a
label x ∈ U . We will construct a bit vector A for X in the following way: A[pos(x)] = 1 if
x ∈ X and A[pos(x)] = 0 otherwise. Consider the example in Figure 4. ADt

and AQt
are

the bit vectors for the structural information of the XML document and the TPQ in Figure
3, respectively.

1 1 1 0 0 1 1

1 1 0 0 0 1 0

1

1.1

1.1.1

1.1.1.1

1.1.1.2

1.1.2

1.2

ADt

AQt

Dewey Labels
1.2.1

1.2.2

0 1

0 1

· · ·

· · ·

2

0

0

Figure 4: Bit Vectors for a Document/TPQ

The bit vector representation facilitates structural comparison. Given the bit vectors of a
document and a TPQ denoted as ADt

and AQt
, respectively, we can easily check whether

their structures match or not. Particularly, if the inner product between AQt
and ADt

is
equal to the number of 1’s in AQt

, then it can be concluded that the document matches the
query. Furthermore, we can also encode the node values of XML documents into vectors to
support content-based matching. Given an XML document D, we create its textual vector
ADc

as follows. For any node x ∈ U , if x ∈ D and x has a value in D, then ADc
[pos(x)] is:

ADc
[pos(x)] =

{
h(content(x,D)) if x is a string

content(x,D) if x is a number,
(1)

where h is a cryptographic hash function from {0, 1}∗ to {0, 1}ℓ and content(x,D) repre-
sents the value of node x in D. On the other hand, if x /∈ D, or x ∈ D but it does not have
any value, then a special integer ω, which is different from any value defined in Equation 1
is assigned to ADc

[pos(x)]. As a simple solution, we can shift all numerical values, so that
all of them are larger than or equal to 1, and set ω = 0. Note that the encoding of predicates
in a TPQ is different from the above (see query construction in Section 3.3 for details).

Example 1. Consider the XML document D in Figure 3(a). Suppose that node j represents
forename, and its value in D is equal to “Adam”. Furthermore, suppose that the order of
j in the label domain is 6. Then, the sixth dimension of the textual vector for D is set to
h(“Adam”), i.e., ADc

[6] = h(“Adam”).

3For example, we can order the labels by the pre-order traversal of the domain hierarchy.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

204 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

3.2 Asymmetric Scalar-product Preserving
Encryption

The encryption strategy we adopt here is based on asymmetric scalar-product preserving
encryption (ASPE) scheme, which was proposed in [35] for efficient secure nearest neighbor
search on the cloud. In particular, suppose that P1 and P2 are two data points, and Q is a
query point in Euclidean space. If P1, P2 and Q are encrypted by ASPE, then a third party
will not learn the values of the points and the query. But it can still determine whether P1

is closer to Q than P2. The building blocks of ASPE are briefly summarized as follows:

•Key. Two (n+1)× (n+1) invertible matrices M1 and M2, and a binary string S of length
n+ 1.

•Data encryption function E1. Let P be an n-dimensional data point. Extend P to P =
(PT ,−0.5‖P‖2)T . Create (Pa, Pb), such that: 1) if S[i] = 1, set Pa[i] = ρi andPb[i] = P [i]−ρi,
where ρi is a random number, and 2) if S[i] = 0, set Pa[i] = Pb[i] = P [i]. The encryption of
P is E1(P) = [(MT

1 Pa)
T , (MT

2 Pb)
T]T .

•Query encryption function E2. Let Q be a query point. Extend Q to Q̂ = r(QT , 1)T , where
r is a positive random number. Create (Qa, Qb), such that: 1) if S[i] = 1, set Qa[i] = Qb[i] =

Q̂[i], and 2) if S[i] = 0, set Qa[i] = σi and Qb[i] = Q̂[i]− σi, where σi is a random number.
The encryption of Q is E2(Q) = [(M−1

1 Qa)
T , (M−1

2 Qb)
T]T .

•Comparison function Comp. Let E1(P1), E1(P2), and E2(Q) be the encryptions of two
points P1 and P2, and a query Q, respectively. To check whether P1 is nearer to Q than P2,
the function checks if (E1(P1)− E1(P2))⊙ E2(Q) > 0, where ⊙ is the inner product.
In the following we briefly discuss the correctness of the protocol. The formal proof can

be found in [35].
Fact 1.

Pa ⊙Qa + Pb ⊙Qb = P ⊙ Q̂

Fact 2.
(P1 − P2)⊙ Q̂ = 0.5r(d2(P2, Q)− d2(P1, Q)),

where function d measures the Euclidean distance between two points.
Based on the two facts, we have

(E1(P1)− E1(P2))⊙ E2(Q)

= ([PT
1a, P

T
1b]

T − [PT
2a, P

T
2b]

T)⊙ [QT
a , Q

T
b]

T

= (P1 − P2)⊙ Q̂

= 0.5r(d2(P2, Q)− d2(P1, Q)).

(2)

The first equation comes from directly expanding the first expression according to the def-
initions of E1 and E2. Note that for two points A and B of the same number of dimensions,
A ⊙ B = ATB. The second and the third equation hold true according to Fact 1 and Fact
2, respectively. It can be seen that if (E1(P1) − E1(P2)) ⊙ E2(Q) > 0, then P1 is nearer to Q
than P2. For a clear presentation, in the following we denote the comparison function by
the following equation:

Comp(E1(P1),E1(P2),E2(Q))

=

0, if d(P1, Q) = d(P2, Q)
−1, if d(P1, Q) < d(P2, Q)
1, if d(P1, Q) > d(P2, Q)

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 205

Below we also give a concrete example of how a third party could determine for a data
user whether or not a query point Q is closer to P1 than P2.

Example 2. Assume that PT
1 = (1, 3) and PT

2 = (1, 11) be two points in the database, and
that a data user would like to know which one of them is closer to the point QT = (3, 4).
Let (M1,M2, S) be the key that is pre-shared between the data owner and the data user
such that

M1 =

0 1 5
−1 −1 0
−4 −5 −4

 ,

M2 =

2 −4 −13
1 −2 −6

−1 1 4

 ,

and ST = (1, 0, 1). From the above we can see

M−1
1 =

4 −21 5
−4 20 −5
1 −4 1

 ,

and

M−1
2 =

−2 3 −2
2 −5 −1

−1 2 0

 .

To encrypt P1, the data owner chooses three random numbers: ρ11 = 9, ρ12 = 3, and

ρ13 = 8. Then the data owner extends P1 to P1 such that P1
T
= (1, 3,−5). With those three

random numbers selected, the data owner creates PT
1a = (9, 3, 8) and PT

1b = (−8, 3,−13).
Thus,

E1(P1) = [(MT
1 P1a)

T , (MT
2 P1b)

T]T

= [(−35,−34, 13), (0, 13, 34)]T

Similarly, to encrypt P2 with three random numbers: ρ21 = 7, ρ22 = 4, and ρ23 = 2, after

extending P2 to P2 such that P2
T
= (1, 11,−61), the data owner creates PT

2a = (7, 11, 2) and
PT
2b = (−6, 11,−63). Finally, E1(P2) = [(−19,−14, 27), (62,−61,−240)].

Now with a random number r = 7, the data user first extends Q to Q̂ such that Q̂T =
(21, 28, 7). After that QT

a = (21, 10, 7) and QT
b = (21, 18, 7) are created. Therefore,

E2(Q) = [(M−1
1 Qa)

T , (M−1
2 Qb)

T]T

= [(−91, 81,−12), (−2,−55, 15)]T .

The data user sends E2(Q) to the third party.
The third party now computes E1(P1) − E1(P2) = [(−16,−20,−14), (−62, 74, 274)]T , and

then (E1(P1)−E1(P2))⊙E2(Q) = 168. Because the inner product is greater than 0, the third
party is able to tell that P1 is closer to Q than P2.

Wong et al. [35] show that the security of ASPE is roughly equal to a symmetric encryption
scheme with n-bit key. To ensure sufficient security, it sets n ≥ 80. If the data point has less
than 80 dimensions, some extra dimensions would be added (refer to [35] for details).

TRANSACTIONS ON DATA PRIVACY 6 (2013)

206 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

In the context of our work, we utilize the features of ASPE to support queries on particular
dimensions of an n-dimensional point P . In particular, suppose that P [λ] is a dimension
of P , and α is a numerical value that is compared against the content of P [λ]. We initially
generate the following two n-dimensional vectors:

Q1λ = (γ1, γ2, · · · , γλ−1, α− s, γλ+1, · · · , γn)
Q2λ = (γ1, γ2, · · · , γλ−1, α+ s, rλ+1, · · · , γn),

where s and γi (i = 1, 2, . . . , λ− 1, λ+ 1, . . . , n) are randomly chosen positive numbers.
We then encrypt Q1λ, Q2λ, and P by E1 and E2, respectively. That is, we use data encryp-

tion function E1 to encrypt Q1λ and Q2λ, and use query encryption function E2 to encrypt
P . Such a construction enables comparison of query content α with P [λ] through ASPE
function Comp as follows:

P [λ] = α if Comp(E1(Q1λ),E1(Q2λ),E2(P)) = 0

P [λ] < α if Comp(E1(Q1λ),E1(Q2λ),E2(P)) = −1

P [λ] > α if Comp(E1(Q1λ),E1(Q2λ),E2(P)) = 1

(3)

3.3 Private TPQ on Encrypted XML Documents

Given a TPQ, its tree pattern and predicates can be evaluated separately. In particular,
let ADt

and ADc
be the structural and textual vectors of an XML document D. Suppose

that Q = (Qt, Qc) is a TPQ, and AQt
is the bit vector that encodes its structure. Then, the

inner product between ADt
and AQt

can determine whether D matches Q with respect
to structure. Let [x, op, α] be a predicate in Qc. Then, the evaluation that takes ADc

and
[x, op, α] as input (i.e., Equation 3) determines whether D satisfies the predicate. However,
in such an approach, there is a possibility that a document only matches the tree pattern
of a TPQ, but does not match the predicates of the TPQ. The cloud server would notice
this after the query evaluation. Such information leakage due to the separate treatment for
structure and content may be undesirable in certain scenarios.
To address the above information leakage, we develop a strategy to combine the struc-

tural and textual encodings as a whole. The strategy is composed of four steps: 1) Key
generation, 2) Index Building, 3) Query Construction and 4) Query Evaluation.

Key Generation. Let U be the universal set containing all the Dewey labels in the domain
hierarchy. Data owner Bob generates two (|U |+1)×(|U |+1) invertible matrices M1 and M2

in which the entries are rational. Bob also creates a (|U |+1)-bit vector S. The two matrices
and S are the secret keys, which are shared with data user Alice and will be used in ASPE
encryption.

Index Building. For each XML document D, Bob first creates two vectors ADt
and ADc

,
which encode the structure and the node contents of D, respectively. Then, he combines
them to form a single vector AD . In particular, suppose that the bit length4 of ADc

[i] is at
most ℓ, where i = 1, 2, . . . , |U |. Bob sets AD[i] = ADt

[i]×2ℓ+ADc
[i], where i = 1, 2, . . . , |U |.

In such a way, AD encapsulates both the structural and textual information of document
D. Finally, AD is encrypted using ASPE function E2 and E2(AD) is transferred to Charlie
as the index of D.

Query Construction. Let Q = (Qt, Qc) be a TPQ, and x be a node in it. Alice first embeds

4We assume that the output length ℓ of hash function h is longer than the bit length of any numerical value in
the database.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 207

Qt in the domain hierarchy. According to the embedding, suppose that the order of x in the
label domain U is pos(x) = λ. Then, Alice creates a sub-query for x in one of the following
two ways, based on whether Qc contains content predicate on x.
Case 1. There exists content predicate [x, op, α] ∈ Qc on x, where op ∈ {>,≥, <,≤,=}. In

such a case, Alice computes ᾱ = 2ℓ + α, and generates the following two vectors:

Q1λ = (γ1, γ2, · · · , γλ−1, ᾱ− s, γλ+1, · · · , γ|U|), and

Q2λ = (γ1, γ2, · · · , γλ−1, ᾱ+ s, γλ+1, · · · , γ|U|),

where s and γi (i = 1, 2, . . . , λ−1, λ+1, . . . , |U |) are positive random numbers. Both vectors
are encrypted by encryption function E1. Finally, Alice creates a triple (E1(Q1λ), E1(Q2λ),
op). It can be easily verified that document D satisfies the predicate [x, op, α], if and only if
its index makes “AD[λ] op ᾱ” hold.
Case 2. There is no content predicate on node x. In this case, Alice calculates ᾱ = 2ℓ.

Then, she also generates Q1λ and Q2λ, and encrypts them as in case 1. According to the
index construction, if a document D contains node x, no matter whether D has content at
x, the λ-th dimension in its index AD must be greater than or equal to 2ℓ, i.e., AD[λ] ≥ 2ℓ.
Therefore, to check whether document D contains node x, Alice finally creates the triple
(E1(Q1λ), E1(Q2λ), ≥). Furthermore, we can see that case 2 is actually a special case of case
1, in which the content predicate is [x,≥, 0].
A TPQ may contain multiple nodes. On each node there might be one or more sub-queries

(e.g., two content predicates on a node connected by ‘∧’ or ‘∨’). Thus, Alice needs to gen-
erate multiple such triples, one for each sub-query. After that, she connects the triples in
conjunctive normal form (CNF), and sends them to Charlie.

Query Evaluation. Given an encrypted TPQ, characterized by a set of triples (E1(Q1λ),
E1(Q2λ), op), for each triple, Charlie evaluates it and returns all the XML documents D
such that the encrypted query evaluates to true. A triple (E1(Q1λ), E1(Q2λ), op) evaluates
to true with respect to a document D if the following holds:

Comp(E1(Q1λ),E1(Q2λ),E2(AD)) =

0, if op = ‘=’
−1, if op = ‘<’
1, if op = ‘>’

3.4 Complexity Analysis

The above protocol consists of an offline step and an online step. The offline step includes
index building, which is done by the data owner Bob only once. For each XML document,
the time complexity for its secure index construction is Θ(|U |2). Therefore, given an XML
database with N documents, the time complexity for the offline step is Θ(N × |U |2). The
online step is composed of query construction and evaluation. It runs for each submitted
query. Given a TPQ Q, the time cost for constructing a sub-query for a node in Q is Θ(|U |2).
Hence, the time complexity for creating an encrypted query is Θ(|Q| × |U |2), where |Q| is
the number of nodes involved in Q. Every sub-query of a TPQ needs to be evaluated with
the index of each XML document in the database. Thus, the evaluation can be done in
Θ(|Q| × |U | × N) time. In general N >> |U |, so the online step has a time complexity of
Θ(|Q| × |U | ×N).
Now let us consider the space complexity. Each XML document is encrypted and stored at

Charlie. If a standard encryption algorithm such as AES is adopted, the storage cost for the
encrypted XML documents is the same for all the possible solutions. Therefore, we focus

TRANSACTIONS ON DATA PRIVACY 6 (2013)

208 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

on the additional space cost due to the secure indexing. Given an XML document, it is easy
to see that the index on the structure (content) requires space in Θ(|U |). If the total number
of XML documents is N , then the space complexity for indexing is Θ(N × |U |).

3.5 Privacy Analysis

According to Section 3.3, a TPQ is decomposed into a set of sub-queries, each for one
node in the TPQ. More precisely, for a node x with content predicate [x, op, α], where
op ∈ {>,≥, <,≤=} and α is a value, a sub-query is constructed for this predicate (case
1 in Query construction). However, when node x does not have the content predicate, a
sub-query is also constructed as if there were a content predicate [x,≥, 0] (case 2 in Query
construction). Therefore, each sub-query can be generalized to the form of [x, op, α]. A TPQ
is a combination of the sub-queries for such predicates. Thus, in the following, for the
simplicity of the analysis, we discuss these predicates, instead of the TPQ directly.
Suppose that [x, op, α] is a predicate, and that the position assigned to x is pos(x) = λ.

To evaluate the query represented by the predicate, we generate the following two vectors
(see Section 3.3):

Q1λ = (γ1, γ2, · · · , γλ−1, α− s, γλ+1, · · · , γ|U|), and

Q2λ = (γ1, γ2, · · · , γλ−1, α+ s, γλ+1, · · · , γ|U|),

where s and γi (i = 1, 2, . . . , λ−1, λ+1, . . . , |U |) are positive random numbers. Let AD be a
vector (i.e., the index) generated for an XML document. By checking whether AD is equally
close to Q1λ and Q2λ, the server can decide whether AD[λ] = α. Such a comparison allows
the server to learn which outsourced documents satisfy the formula AD[λ] = α, although
the server knows neither AD[λ] nor α, which have been encrypted by ASPE. We remark that
such kind of information disclosure is the so-called access pattern [10], which is difficult to
prevent and almost all efficient private keyword search schemes leak this information.
Our protocol in Section 3.3 supports range queries. Given a predicate [x, op, α], its related

vectors Q1λ and Q2λ, and the vector AD of an XML document, the server knows whether
AD[λ] < α by checking whether AD is closer to Q1λ than Q2λ. Therefore, after the evalu-
ation of the sub-query corresponding to predicate [x, op, α], the server is able to partition
all the outsourced XML document into three disjoint subsets: 1) documents with x value
equal to α, 2) documents with x value less than α, and 3) documents with x value greater
than α. However, in any of the latter two subsets, the server cannot order the documents
in either ascending or descending order of their x values.

Lemma 1. Suppose that [x, op, α] is a predicate, and the order of x is pos(x) = λ. Let AD1

and AD2
be two data points, such that AD1

[λ] < α and AD2
[λ] < α. The server cannot

determine whether or not AD1
[λ] > AD2

[λ].

Proof. Let Q1λ and Q2λ be the points generated according to the predicate. Notice that
AD1

[λ] > AD2
[λ] if only if d2(Q2λ, AD2

) − d2(Q1λ, AD2
) > d2(Q2λ, AD1

) − d2(Q1λ, AD1
).

But since d2(Q2λ, AD2
) − d2(Q1λ, AD2

) and d2(Q2λ, AD1
) − d2(Q1λ, AD1

) are protected by

different random values, i.e., (Q1λ −Q2λ)
T ÂD1

= 0.5r1(d
2(Q2λ, AD1

)− d2(Q1λ, AD1
)) and

(Q1λ−Q2λ)
T ÂD2

= 0.5r2(d
2(Q2λ, AD2

)−d2(Q1λ, AD2
)), the cloud server cannot determine

whether or not AD1
[λ] is greater than AD2

[λ].

Note that in the scenario where only the function of equality matching is needed, we can
actually prevent the server from learning whether or not AD[λ] < α by randomizing the

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 209

order of E1(Q1λ) and E1(Q2λ) before sending them to the server. In such a way, the equality
comparison is still possible by checking whether AD is at the same distance from Q1λ and
Q2λ. However, since the server cannot distinguish E1(Q1λ) from E1(Q2λ), it cannot tell
whether AD[λ] < α.

4 The Efficiency Improvement

In the last section, we present a solution, which requires a TPQ to be evaluated with each
XML document in the outsourced database. To improve its computational efficiency so
that it can be well scaled for large data sources, in this section we propose an optimization
technique, which consists of two phases: 1) partition XML documents by DTD, and 2) build
a k-d tree on each partition.
In the first phase, the optimization technique partitions the XML documents by their

DTDs, such that in each resultant partition all the documents have the same DTD. It treats
each resulting partition independently, as if each one were an independent outsourced
database. In particular, for each partition it builds independently a domain hierarchy, based
on which the secure indices for all the documents in the partition are constructed. Given a
TPQ, then all the documents in irrelevant partitions can be pruned. Clearly, this improves
the query efficiency. Furthermore, it also saves storage space for secure indices, since these
indices are built according to the domain hierarchies, which are smaller than the complete
domain hierarchy.

Example 3. Suppose that there are three DTDs in an outsourced database, and Figure 2 is
the domain hierarchy built on these three DTDs. Suppose that the first DTD corresponds
to subtree(a), i.e., the subtree rooted at node a in Figure 2, the second DTD corresponds to
subtree(b), and the third corresponds to subtree(c). Then, by the above optimization tech-
nique, the outsourced database is divided into three partitions, and subtree(a), subtree(b),
and subtree(c) become their domain hierarchies, each exclusively for one partition. Now
consider the TPQ in Figure 3(b). Before the optimization, it needs to be evaluated with the
documents in the whole database. With the optimization, it only needs to be evaluated
with the documents in the first partition, since it can only be embedded in subtree(a).

2000

R
5 1995

S&P VLDB

R
3

R
4

R
1

R
2

 >

>

> >

Year

Booktitle

1990 1995 2005 2000 2010

SIGMOD

ICDE

S & P

VLDB

R
3

R
1

R
5

R
2

R
4

(a) A k-d Tree (b) The Space Partition
Figure 5: An Example of k-d Tree Partitioning

The second phase is a further efficiency improvement on the basis of the first one. After
partitioning the XML documents according to DTDs, the number of documents in a parti-
tion might still be large. To further improve the performance, the data owner builds a k-d
tree for each partition, such that documents with similar node values are clustered in the
same leaf in a k-d tree.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

210 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

A k-d tree (short for k-dimensional tree) is a binary tree for indexing k-dimensional data
points. It recursively partitions the data space into two subspaces by a (k− 1)-dimensional
hyperplane. Each node n in the tree is associated with one dimension ax and a splitting
point sp on the axis of ax. In general, sp is the median of all the ax values in node n. All
the data points in the left subtree of node n have an ax value less than or equal to sp, and
all the data points in the right subtree have an ax value greater than sp. In this way, the
splitting point sp actually sets a (k − 1)-dimensional hyperplane perpendicular to the axis
of ax. The hyperplane splits the space covered by node n into two (i.e., one covered by
the left subtree and the other by the right subtree). Usually, the dimension to be associated
with a node is decided in a round-robin way. That is, a node at level dp is associated with
the i-th dimension, where i = dp mod (k) + 1.

To build a k-d tree for a partition of XML documents that are created according to the
same DTD, we select k nodes from the DTD to act as the k dimensions. The node values
can be numerical or categorical. If the values in a dimension are numerical, we can use
them directly. For categorical values, we need to map them into integers. There are var-
ious methods for such mapping. In the following we give some possible methods. If the
categorical values in a dimension are organized semantically in a hierarchy, we can assign
a distinct integer to each value by the pre-order traversal of the hierarchy as in [6]. If such
a hierarchy is unavailable, we may sort the categorical values in the ascending order of the
number of XML documents containing them, and then assign sequential integers to them.
In addition, we may also consider generalizing categorical values before assigning integers
(e.g., names, like John, Jane, and Jack, starting by letter ‘J’ can be generalized to ‘J*’).

Example 4. Consider the set of XML documents in the Inproceedings dataset that record the
publications of authors. In an XML document, there is a ‘year’ node indicating when the
work was published, and there is also a ‘booktitle’ node indicating where the work was
published. We can take ‘year’ and ‘booktitle’ as the first and the second dimension, re-
spectively, and build a k-d tree on them. Thus, here k = 2. As shown in Figure 5(a), the data
is first partitioned on ‘year’, then on ‘booktitle’, and then on ‘year’ (i.e., in a round-
robin way). Figure 5(b) shows the leaf nodes in the k-d tree, which forms a partitioning of
XML documents of the Inproceedings dataset.

The k-d tree is shared between the data owner and the user, but hidden from the cloud
server. Given a TPQ, the user can refer the server to a subset of leaf nodes (in the k-d tree),
which might contain matching documents. The evaluation in all the remaining leaf nodes
is pruned. In Example 4, if Alice is interested in SIGMOD papers from 1992 to 1994, then
only the documents in partition R1 should be evaluated.

Although the k-d tree can improve the query efficiency as shown above, it may poten-
tially leak sensitive information to the third party. Therefore, we adopt privacy metrics to
guide its construction. So far the proposed privacy metrics can be divided into two cate-
gories: syntax-based and mechanism-based. The former defines the format that the sanitized
dataset should comply with. Its representatives include k-anonymity [31], ℓ-diversity [23],
t-closeness [22], and β-likeness [5]. The latter, instead of imposing any constraint on the
dataset to be published, specifies requirements on the mechanism, which releases the data.
Its popular representative is the differential privacy [13]. In the following, we adopt J-S di-
vergence, an instantiation of t-closeness, to guide the anonymity of the k-d tree in Section
4.1, while in Section 4.2, we use differential privacy.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 211

4.1 k-d Tree Guided by J-S Divergence

The use of a k-d tree does not change the query results. Thus, the server does not gain
extra information from the query results alone. However, the k-d tree allows the server
to prune leaf nodes, which definitely do not contain XML documents satisfying the query
constraints. Such pruning potentially makes it possible for the server with certain back-
ground knowledge to learn more about a query. Consider once again Example 4. Suppose
that the year frequencies for ‘1992’ and ‘2002’ are close to 10%. Given a query on year 2002,
then around 10% XML documents appear in the query result. The cloud server with ap-
proximate background knowledge about the year distribution can guess that the query is
for either year 1992 or 2002. Still, it cannot determine which one of 1992 and 2002 is correct.
However, with the k-d tree the server is directly referred to partition R3 for the query pro-
cessing. If the server also has the background knowledge of the partition (e.g., the extent
of R3 and the data distribution within it), then it can infer the query is for year 2002.
The above inference is possible, because the distribution of year values in partition R3 is

different from that in the whole dataset. J-S divergence is a well-known method to measure
the similarity of two probability distributions. In the following we apply it to control the
data distribution of leaf nodes, and thus to limit the disclosure of sensitive information.
Given a node x in the XML documents, let {v1, v2, . . . , vm} be its value domain. Suppose

that the global distribution of x in the whole dataset is G = (G[1], G[2], . . . , G[m]), where
G[i] is the probability of vi in the whole dataset and i = 1, 2, . . . ,m. Furthermore, suppose
that the local distribution of x in a leaf node of the k-d tree is L = (L[1], L[2], . . . , L[m]),
where L[i] is the probability of vi in the leaf node and i = 1, 2, . . . ,m. The J-S divergence to
measure the difference between G and L is:

JS(G,L) =
1

2
KL(G,M) +

1

2
KL(L,M), (4)

where M = 1
2 (G+L), KL(G,M) =

∑
i ln

(
G[i]
M [i]

)
·G[i] is the K-L divergence between G and

M , and KL(L,M) =
∑

i ln
(

L[i]
M [i]

)
· L[i] is K-L divergence between L and M . Intuitively, if

J-S divergence is smaller, then G and L are more similar and referring the server to one par-
tition leaks less information. Based on the J-S divergence, we give the following definition,
which decides whether a node in the k-d tree can be further split.

Definition 4 (Splitting eligibility). Let x1, x2, . . . , xk be k nodes, which constitutes the k
dimensions of a k-d tree. Suppose that Gj is the global distribution of xj values in the whole
dataset, and that tj is a threshold, where j = 1, 2, . . . , k. Then, a node in the k-d tree can
be split into two children C1 and C2 along the j-th dimension, only if JS(Gj , L

1
j) ≤ tj and

JS(Gj , L
2
j) ≤ tj , where L1

j and L2
j are the local distributions of xj in C1 and C2, respectively.

4.2 k-d Tree Guided by Differential Privacy

Differential privacy requires that the data of any particular person should not have obvi-
ous impact on the query output. Intuitively, it ensures the privacy of individuals, since
whether a person’s data is in the dataset or not, the inferred knowledge by an attacker is
the essentially the same. In the following we first introduce some background knowledge
about differential privacy, before applying it to the k-d tree.

Definition 5. D1 and D2 are two neighboring datasets, if D1 = D2 ∪ {t} or D2 = D1 ∪ {t},
where t is a tuple and D2 ∪ {t} (or D1 ∪ {t}) represents the resulting dataset after adding

TRANSACTIONS ON DATA PRIVACY 6 (2013)

212 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

tuple t to D2 (or D1). We use D1 ≃ D2 to denote that D1 and D2 are two neighboring
datasets.

Given a function f : D → R, its L1 sensitivity is defined to be

σ(f) = max
(D1,D2):D1≃D2

|f(D1)− f(D2)|.

In the case that f is a count query, σ(f) = 1 since for any pair of neighboring datasets D1

and D2, the values of f(D1) and f(D2) only differ by 1.

Definition 6. Let D1, D2 be any two neighboring datasets, A a randomized algorithm on
the datasets, and S be any subset of the output domain of A. Algorithm A is said to be
ε-differentially private if

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S].

The most commonly used technique for designing algorithms that satisfy differential pri-
vacy was proposed by Dwork et al. in [13], which is also called the Laplace mechanism. Let
f(D) denote a function on a dataset D. An ε-differentially private mechanism for releasing
f(D) is to publish L(D) = f(D)+X , where X is a random variable drawn from the Laplace
distribution Lap(σ(f)/ε).
A second mechanism to achieve differential privacy is the exponential mechanism by McSh-

erry and Talwar [27]. To apply this mechanism, a score function q : D ×R → R is defined,
where D is the input dataset and R is the output domain of the mechanism. Given a value
r ∈ R, the score q(D, r) shows the closeness of r to the ideal output—the higher the score
is, the closer r is to the ideal output. Given a dataset D, an exponential mechanism M
satisfying ε-differential privacy outputs r with a probability of

Pr[M(D) = r] ∝ exp

(
ε

2σ(q)
q(D, r)

)
,

where
σ(q) = max

(D1,D2):D1≃D2

{max
∀r∈R

|q(D1, r)− q(D2, r)|}.

Composability. Differential privacy has the property of composability. Given a set of mech-
anisms, which satisfy differential privacy with respect to ε1, ε2, . . . , εn, respectively, they
satisfy as a whole ε-differential privacy where ε =

∑n

i=1 εi. Parameter ε is usually called
the total privacy budget. Given a task consisting of multiple steps, to satisfy ε-differential
privacy, a portion of privacy budget is assigned to each step such that the summation of all
the portions is upper-bounded by ε.
To build a k-d tree satisfying differential privacy, we adopt the technique proposed by

Cormode et al. in [9]. Two types of queries are involved when building the k-d tree. a)
Count query, which is to release the sizes of the nodes in the tree. During the building
process, to ensure each node size used satisfies differential privacy, Laplace mechanism is
adopted and appropriate noise is added to the true node size. In particular, if a privacy
budget of εi is assigned to a node, then the Laplace noise drawn from Lap(1

εi
) is added to

the true node size. b) Median query, which is to identify the splitting points of the nodes in
the tree. The k-d tree structure may potentially disclose private information. To ensure that
tree structure satisfies differential privacy, exponential mechanism is applied to select the
splitting points. Specifically, let εi be the privacy budget allocated to split a given node on

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 213

dimension ax. Suppose that r is in the range of ax values in the node and xm is the median
of all ax values in the node. Then the exponential mechanism returns the splitting point r
with the probability Pr[r] ∝ exp

(
− εi

2 |rank(r) − rank(xm)|
)
, where rank(r) and rank(xm)

are the ranks of r and xm in the node, respectively.
Next, we briefly explain how they build such a k-d tree in a differentially private way

[9]. At the very beginning, given the total privacy budget ε, the algorithm constructing the
k-d tree would allocate a fixed percentage mb of ε for the method that outputs the private
medians, and the rest of the private budget will be used for the private count method.
The algorithm starts by trying to split the root node containing all the tuples in the input
dataset. More precisely, the algorithm first makes a call to the private count method to get
a noisy count of the tuples in the root node, which is then appended to the tail of a FIFO
queue. Depending on the noisy count and the current height of the node removed from the
head of the queue, the algorithm would either 1) stop the splitting process of that node if
the noisy count is less than or equal to splittingThreshold or the current height of that node
has reached maxHeight, or 2) split that node into subnodes according to the private median
method. For each subnode created, a subsequent call to the noisy count method would be
made and the subnode is then added to the tail of the queue. This process continues until
the FIFO queue is empty, i.e., all the leaf nodes of the k-d tree are identified.
Since we adopt the hybrid tree proposed in [9], there is one additional parameter switch-

Level that could be adjusted, which is used to indicate when the algorithm should switch
from the data-dependent decompositions to the deta-independent decompositions. To be
specific, after level swithLevel, instead of calling the method to choose a private median,
the algorithm will divide a node into regions of equal size via the midpoint induced by the
tuples within the node along the current axis.
As for the strategies for allocating privacy budget along each root-to-leaf path, authors in

[9] proposed to use the geometric budgeting strategy: from a parent node to a child node, the
privacy budget increases geometrically by a factor of 3

√
2. The interested reader is referred

to [9] for their thorough discussions regarding the strategies and the method they deploy
to boost the range query accuracy.
One thing to note is that the counts for the leaf nodes in a k-d tree described above are

noisy ones. If the added noise is positive, then the data owner has to create some fake
XML documents residing in the bounding box of that leaf node and then encrypt them by
the secret key shared with the data user. Data owner also needs to mark all the fake XML
documents so that when they are decrypted later by the data user, they can be pruned.
On the other hand, if the added noise is negative, the data owner has to randomly select
documents within the leaf node and suppress them. We can see that the use of such a k-d
tree would result in false positive documents returned to the data user and false negative
documents suppressed by the data owner.

5 Multiple Embeddings of a TPQ

Given a domain hierarchy with Dewey labels, it is possible that a TPQ has multiple encod-
ings. This happens mainly because more than one node in the domain hierarchy may have
the same name, although they have different Dewey labels. Consider the domain hierarchy
in Figure 6. Suppose that we have a TPQ with a single node author. In this case, the TPQ
can be mapped to any of the 6 author nodes in the domain hierarchy. As a consequence,
we have altogether 6 embeddings. In general, the number of embeddings of this kind of
query is not large, i.e., it is upper-bounded by |U |, the size of label domain.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

214 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

inproceedings

year title author1 author2 author3 author4 author5 author6

Figure 6: An Example Domain

In a more complicated case, a TPQ has multiple nodes, some of which can be mapped to
multiple nodes with the same names in the domain hierarchy. If this is the case, some mech-
anism needs to be developed to avoid the generation of exponentially many embeddings
for the TPQ. Consider once again the domain hierarchy in Figure 6. Suppose that Figure 7
is a TPQ. Since the inproceedings element has 6 child elements of author, this query
has

(
6
2

)
= 15 different embeddings. One way to deal with this problem is for the data user

to give the specific positions (i.e., by position predicate [position() = m]), to which such
query nodes should be mapped. For instance, once the user requires that the two authors
in the TPQ should be mapped to the first two authors in the domain hierarchy, then there is
only one embedding for the query. Alternatively, the user can also decompose the original
query into multiple sub-TPQs. For instance, the user can decompose the query in Figure
7 into the two sub-TPQs in Figure 8. The sub-TPQ in Figure 8(a) has 6 embeddings, corre-
sponding to 6 content predicates: πi = [authori,=, “Michael”] for i from 1 to 6. Similarly,
the sub-TPQ in Figure 8 (b) also has 6 embeddings, corresponding to 6 content predicates,
i.e., τj = [authorj ,=, “John”] for j from 1 to 6. The third party now should return those
documents such that (

∨
i πi)

∧
(
∨

j τj) evaluates to true. Note that right now we only have
12 embeddings in total after the query decomposition.

inproceedings

year title author author

[author = “Michael”] [author = “John”]

Figure 7: An Example Query

inproceedings

year title author

[author = “Michael”]

inproceedings

author

[author = “John”]

(a) Split Query Tree 1 (b) Split Query Tree 2

Figure 8: An Example of Query Decomposition

Just like a TPQ, an XML document may also have multiple embeddings in the domain
hierarchy. However, we only need to consider one possible embedding for each XML doc-
ument. This suffices for the matching between a TPQ and an XML document, because we
have already enumerated all the possible embeddings of the TPQ. In our work, for each
XML document, we only use its left-most embedding.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 215

6 Experimental Report

In this section we give a thorough experimental evaluation of the proposed scheme. We
use 3 XML datasets (Table 1). The first dataset is Inproceedings, which is a subset of DBLP
dataset [24]. Each subtree under the element node Inproceedings in the DBLP dataset
represents a publication, which appears in a major computer science journal or confer-
ence. We take each such subtree as an XML document. Altogether this set has 205,404
documents. Stock Quotes is a randomly generated Nasdaq stock quotes [25] containing in-
formation about 5,000 stocks. The third dataset is University Courses [26], which records the
course data from the websites of Reed College. It contains 703 documents. In the following
experiments, unless otherwise specified, we will use Inproceedings dataset as the default
dataset. The prototype of our solution is implemented in Java, and the experiments were
carried out on an Intel Core i7-2600 3.40GHz CPU machine with 8G bytes memory running
Linux 3.4.13.

Table 1: The Datasets
Dataset Num. of Documents Subtree size

Inproceedings 205,404 91
Stock Quotes 5,000 19

University Courses 703 15

6.1 Index Building

We build the secure indices for XML documents through the following three steps: 1) build-
ing a domain hierarchy, 2) generating for each XML document a vector (i.e., an index),
which encodes structural and textual information about the document, and 3) using ASPE
to encrypt the vectors.
Each dataset in the experiment has a DTD. We build the domain hierarchy by adding a

root node over the three DTDs of the three datasets (Section 3.1). Thus, each DTD becomes a
subtree under the root node of the domain hierarchy. A publication in Inproceedings dataset
generally contains multiple authors, and the number of authors varies from one publica-
tion to another. We scanned the whole dataset, and found that most of the publications
have at most 10 authors. Thus, in the subtree representing the DTD of Inproceedings, we
duplicate the author node 10 times. After this expansion, this subtree contains 91 nodes.
The sizes of another two subtrees, which represent the DTDs of another two datasets (i.e.,
Stock Quotes and University Courses), are 19 and 15, respectively (Table 1). As a result, the
domain hierarchy contains 91 + 19 + 15 = 125 nodes (excluding the root). We label the
domain hierarchy by Dewey labeling, and order the Dewey labels.
Once the domain hierarchy is ready, we start to encode each XML document into a vector.

We first embed each XML document in the domain hierarchy. In particular, we use the
algorithm proposed in [1]. An XML document is decomposed into edges. For each of
such edges, the algorithm finds its potential matching edges in the domain hierarchy. All
these potential matching edges are joined together. A join result is a valid embedding, if
the PC/AD relationships among its nodes are consistent with those in the XML document.
Among all the possible embeddings for an XML document, we select the left-most one
(Section 5). Then, according to the Dewey labels and their ordering in the domain hierarchy,
a 125-dimensional vector is built for the XML document. Table 2 shows the encoding time
for each dataset.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

216 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

Table 2: Time for Building Secure Indices (ms)
Inproceedings Stock Quotes University Courses

Encoding 277,680 8,849 2,005
Encryption 198,306 5,591 825

We use ASPE [35] (Section 3.2) to encrypt the vectors (i.e., the indices) of the XML doc-
uments. Table 2 gives the elapsed time of the encryption for each dataset. If we consider
Table 1 and Table 2 together, we can see that the encryption time grows linearly as a func-
tion of the dataset size. This is consistent with the analysis (in Section 3.3), which says the
time complexity of encrypting a vector is Θ(|U |2). Here, |U | = 125.

6.2 Query Evaluation without k-d Tree

In the basic scheme, the secure indices for all the three datasets are put together. Given a
TPQ, it is evaluated against each encrypted index.
We first analyze the effect of TPQ size on the query efficiency. We generate 5 TPQs contain-

ing 1, 3, 5, 7, and 9 nodes, respectively. Vectors for these 5 TPQs are then created according
to the steps of query construction in Section 3.3. Figure 9(a) shows the result, in which the
elapsed query processing time grows linearly as a function of the TPQ size. This happens,
because a sub-query has to be created for each node in a TPQ.
Next, we fix the TPQ size to 3, and examine the impact of the outsourced database size

on the query efficiency. The complete outsourced database in our experiments consists of
three datasets—Inproceedings, Stock Quotes, and University Courses. We generate 5 databases
by randomly sampling 10k to 160k documents from the complete database. As expected,
the elapsed time for the query processing increases as a function of database size (Figure 9
(b)).

10

20

30

1 3 5 7 9
TPQ Size

Time (sec)

2

4

6

8

10k 20k 40k 80k 160k
Outsourced Database Size

Time (sec)

(a) Varying TPQ Size (3 Datasets Combined) (b) Varying Database Size

Figure 9: Varying TPQ Size and Database Size

6.3 Query Evaluation with k-d Tree Built by J-S Divergence

To improve the query efficiency (Section 4), we can partition the XML documents by DTDs.
However, the resultant partition for Inproceedings in our experiments is still quite large (i.e.,
205,404 documents), and thus the query processing on it is still time consuming. To fur-
ther boost the efficiency, we employ a k-d tree, which splits the Inproceedings into smaller
partitions. Node year and node booktitle exist in the XML documents in the Inproceed-
ings. The value of year ranges from 1959 to 2002, and there are 1,744 distinct values for
booktitle. We take these two nodes as the dimensions of a k-d tree, where k = 2. We

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 217

Table 3: Change of tbooktitle when tyear =
0.6

tbooktitle # of Leaves

0.500 17
0.525 24
0.550 33
0.575 46
0.600 71
0.625 103
0.650 179
0.675 456
0.700 2,406

Table 4: Change of tyear when tbooktitle =
0.6

tyear # of Leaves

0.500 16
0.525 30
0.550 48
0.575 61
0.600 71
0.625 74
0.650 74
0.675 74
0.700 74

use the splitting eligibility condition specified in Definition 4 to determine whether a node in
the k-d tree can be further split. For the dimension associated with year, we set threshold
tyear, which requires that the local distribution of year values in a k-d tree node should
not be different (by J-S divergence) from that in the whole Inproceedings dataset by more
than tyear. In a similar fashion, we set the threshold tbooktitle for dimension booktitle.

With the k-d tree constructed, each point query with constraints on year and booktitle

will be evaluated only with the XML documents in a leaf of k-d tree. This improves the ef-
ficiency. However, the distributions of year and booktitle could vary from one tree
node to another. Thus, to satisfy the splitting eligibility condition, the leaf size in a k-d
tree could be different from one leaf to another. To better measure the evaluation time, we
randomly generate 100 queries of 5 predicates, two of which are constraints on the dimen-
sion of year and booktitle and the constraints on those two dimensions are uniformly
generated over the domains of year and booktitle.

To see the improvement effect, we first fix the J-S divergence threshold for year tyear
to 0.6 and vary the threshold tbooktitle for booktitle. Table 3 lists the total number of
leaves for each configuration of tbooktitle. It can be seen that the total number of leaves
increases, when the J-S divergence increases. This is as expected, since larger divergence
threshold is more tolerant of the difference between the global and local distributions of
booktitle and more leaves could be generated. As the number of leaves increases, the
leaf size on average decreases instead. Thus, the query efficiency, which is linear to the leaf
size, is improved. Figure 10(a) supports this. In addition, it also shows that the efficiency
improvement is more obvious when tbooktitle > 0.625, since beyond that threshold value
the number of leaves increases in a steep fashion.

0.2

0.4

0.6

0.8

1.0

1.2

0.500
0.525

0.550
0.575

0.600
0.625

0.650
0.675

0.700
tbooktitle

Time (sec)

0.2

0.4

0.6

0.8

0.500
0.525

0.550
0.575

0.600
0.625

0.650
0.675

0.700
tyear

Time (sec)

(a) (b)

Figure 10: Varying J-S Divergence

Next, we fix tbooktitle to 0.6 and vary tyear. The number of resulting leaves in the k-d tree
for each configuration of tyear is given in Table 4. The number of leaves generated stops

TRANSACTIONS ON DATA PRIVACY 6 (2013)

218 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

increasing when tyear reaches 0.625. This results from the strict constraints we impose on
tbooktitle, which prevents the k-d tree nodes from being further split. The evaluation time
given in Figure 10(b) also reflects this fact; it stops decreasing after tyear reaches 0.625. We
also note that varying J-S threshold would also affect the efficiency of building a k-d tree.
In general, higher J-S thresholds would lead to higher time needed to build a k-d tree.
According to our experiments, it takes at most 2,676 ms to build a k-d tree.
In addition to the point queries, we also consider the effect of k-d tree on the efficiency

improvement for range queries. We generate 7 range queries of 5 predicates. Out of those
5 predicates, 4 of them are constraints on the dimensions of year and booktitle, i.e., the
lowerbound and upperbound of year and booktitle, respectively. The last one is a con-
straint on the dimension of title. The minimum bounding box for each range query and
the number of XML documents that need to be compared are given in Table 5. Figure 11 re-
ports the elapsed time, where selectivity denotes the proportion of documents involved in
the evaluation of a given query. As the selectivity increases, the number of XML documents
needed to be evaluated for a query increases. Thus, the time cost also increases.

Table 5: Range Information for Different Range Queries (tbooktitle = 0.625 and tyear = 0.625)
year booktitle # documents

[1968,1989] [1,1388] 7,879
[1968,1992] [1,1388] 13,765
[1968,1992] [1,1631] 27,453
[1968,1995] [0,1631] 46,399
[1968,1996] [0,1696] 71,006
[1959,1996] [0,1743] 105,888
[1959,2002] [0,1743] 205,404

2,000

4,000

6,000

8,000

10,000

12,000

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Selectivity

Time (ms)

Figure 11: Varying Query Ranges

6.4 Query Evaluation with k-d Tree Built by Differential Privacy

We now study the effectiveness of our method optimized via a k-d tree, which is built
under the constraints of differential privacy. Since noises are added, the computed query
results by the cloud server are no longer precise. To measure their accuracy, we adopt two
metrics:

Recall =
tp

tp+ fn
,

and

Precision =
tp

tp+ fp
,

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 219

where tp is true positive (i.e., the number of relevant documents in the query result), fn
is false negative (i.e., the number of relevant documents not in the query result), and fp is
false positive (i.e., the number of irrelevant documents in the query result). Basically, Re-
call is to measure the fraction of documents, which are relevant to the query and success-
fully retrieved, and Precision is the fraction of the retrieved documents that are relevant to
the query. The approach [9] we apply to generate the differentially-private k-d tree has a
few parameters as listed in Table 6. By default we set ε = 1.0, splittingThreshold = 210,
maxHeight = 8, switchLevel = 5, and mb = 0.3. In the following we tune these parameters
to study their effect on Precision and Recall.

Table 6: The Parameters in [9]
Parameter Function Value

ε The total privacy budget 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

splittingThreshold The minimum size of a splittable node 26 27 28 29 2
10 211 212 213 214

maxHeight The maximum height of the k-d tree 1 2 3 4 5 6 7 8 9 10
switchLevel The level from data-dependant splitting to data independent 1 2 3 4 5 6 7 8

mb The percentage of privacy budget for splitting 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

We first vary ε. Figure 12 shows that both the recall and precision rates increase as a
function of ε. This is as expected. As ε is higher, the added noise to each leaf node in the
k-d tree is lower. Thus, the number of suppressed tuples due to negative noise is lower
and the recall rate is higher. At the same time, the number of fake tuples due to positive
noise is also lower and the precision rate is higher. The experimental result also shows
a trade-off between privacy and performance—relaxed privacy with higher ε value gives
better performance of our proposed approach. However, as pointed out in [14], choosing
an appropriate ε value is by no means an easy task for the laymen. Recent expositions by
Lee et al. [20, 21] attempt to give some guidelines for selecting a proper ε such that the
posterior belief in a particular individual’s presence in a dataset given the query result is
upper-bounded by a user defined threshold. On the other hand, the work in [17] derives a
lower bound on how much noise should be added to ensure the privacy of sensitive data.
We refer the interested readers to the papers above since the setting of ε is not in the scope
of our work.

0.97

0.98

0.99

1.00

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

Recall
Precision

Figure 12: Varying Privacy Budget ε

Next, we vary splittingThreshold. If the noisy count of a node in the k-d tree is smaller than
this threshold, further splitting of the node stops. Hence, splittingThreshold controls the
sizes of leaves. When its value increases, the leaf nodes become bigger, and therefore, the
ratio of the added Laplace noise to leaf size is smaller, resulting in higher recall and preci-
sion rates (Figure 13(a)). An interesting point in the figure is at splittingThreshold = 210.
When the threshold is beyond 210, the recall and precision rates are greater than 0.99. But
below that, the rates are much lower. We take a closer look at the experimental outputs.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

220 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

When splittingThreshold < 210, a big portion of leaf nodes are small compared to the mag-
nitude of Laplace noises added to them. For instance, when splittingThreshold = 26, the
average leaf node size is 22.586 while the standard deviation of the leaf node size is 46.078,
indicating that the size varies a lot and the number of small leaves is big 5 For those nodes
with small sizes, it is possible that most of the tuples or even all of them are suppressed
due to negative noise or that a considerable amount of fake tuples are added due to pos-
itive noise. In either case, the accuracy of the query output is low. To address this issue,
we vary splittingThreshold and compare the mean leaf size and its standard deviation. It
turns out that after splittingThreshold reaches 210, the former is always greater than the
latter (Figure 13(b)), indicating most of leaf nodes are ‘big’ enough. For example, when
splittingThreshold = 210, the average absolute value of noise added to leaf nodes is 2.400,
and 68% the leaf nodes have a size larger than 2.400.

0.85

0.90

0.95

1.00

26 27 28 29 210 211 212 213 214

Splitting Threshold

Recall
Precision

(a) Recall and Precision

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

26 27 28 29 210 211 212 213 214

Splitting Threshold

Mean
Standard Deviation

(b) Noise Magnitude / Node Size

Figure 13: Varying splittingThreshold

We now examine maxHeight. Given a node, if the length of the path from the k-d tree
root to it reaches maxHeight, further splitting of the node stops and the node becomes a
leaf. From Figure 14, we can see that in general lower maxHeight results in high recall
and precision rates. This is reasonable, because lower maxHeight results in large-sized
leaf nodes in the end. Hence, the inserted noises have less effect on the query output. An
interesting thing to note in Figure 14 is that the recall and precision rates are V-shaped and
they reach minimum when maxHeight is 5. The main reason behind is as follows. A k-d
tree node at level 5 usually has a size smaller than 210. Thus, the default value (i.e., 210)
of splittingThreshold usually stops the node from further splitting. Consequently, when
maxHeight ≥ 5, the average root-to-leaf length in the k-d tree is around 4.57. That is, once
maxHeight ≥ 5, the tree structure becomes stable. However, as maxHeight increases, the
privacy budget allocated to the leaf nodes by the geometric budgeting strategy is higher.
Therefore, smaller noise is added to a leaf node, and the query output is more accurate.
The following is a specific example. When maxHeight is set to 5, the budget allocated to
level 5 is 0.192. But if maxHeight is 6, the budget for level 5 is 0.142 and 0.180 for level 6.
The constraint by splittingThreshold usually does not allow a node to further split after it
reaches level 5. Thus, in the case of maxHeight = 6, the privacy budget allocated to the leaf
could be 0.142 + 0.180 = 0.322, which is higher than 0.192 for the case of maxHeight = 5.
We also vary switchLevel to study its effect on query output. switchLevel controls the

level, beyond which the node splitting switches from data-dependent to data-independent.
The experimental results show that recall and precision rates are high (i.e., greater than
0.99) for all the cases (Figure 15). After swithLevel is 4, the rates do not increase obviously.
This suggests that a switchLevel of 4 fits with the given dataset.

5In this case, the average absolute value of noise added to leaf nodes is 5.592, 69% of the leaf nodes with a size
smaller than 5.592

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 221

0.990

0.995

1.00

1 2 3 4 5 6 7 8 9 10
maxHeight

Recall
Precision

Figure 14: Varying maxHeight

0.995

0.996

0.997

0.998

0.999

1.000

1 2 3 4 5 6 7 8
switchLevel

Recall
Precision

Figure 15: Varying switchLevel

Finally, we investigate the percentage mb of privacy budget allocated for private median
selection. Figure 16 shows that higher mb results in lower recall and precision rates. This
is as expected since higher mb implies a lower privacy budget for counting when creating
a leaf node, which in turn results in larger magnitude of the noise generated. According
to Figure 16, it is advised that at least half of the privacy budget should be allocated for
private counting in order to have high recall and precision rates.

0.975

0.980

0.985

0.990

0.995

1.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mb

Recall
Precision

Figure 16: Varying mb

6.5 Time Overhead

In this subsection, we evaluate the efficiency of our proposed approaches. We employ
two benchmarks, both of which process the queries on the plaintext XML documents. We
compare our approaches with the benchmarks in terms of elapsed time. We first carry
out the experiments, in which there is no query optimization, i.e., the k-d tree is not used.
Figure 17 gives the results. As expected, the benchmark approach (i.e., Base) is faster than
ours (i.e., Embedding).
Next, we study the efficiency improvement when a k-d tree built according to J-S diver-

gence is used. Three schemes are involved in the experiments: a) Embedding-JC-tree, our
scheme with a k-d tree built via J-S divergence, b) Base, the benchmark on plaintext XML

TRANSACTIONS ON DATA PRIVACY 6 (2013)

222 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

0.001
0.01

0.1
1

10
100

1 3 5 7 9
TPQ Size

Time (sec)
Embedding

Base

Figure 17: Varying TPQ Size

documents without the support of a k-d tree, and c) Base-tree, the benchmark on plaintext
XML documents with the support of a k-d tree. We consider queries consisting of 5 predi-
cates, of which two are constraints on booktitle and year. In Figure 18(a), we fix tyear
to 0.6 and vary tbooktitle, while in Figure 18(b), we fix tbooktitle to 0.6 and vary tyear. Obvi-
ously, the k-d tree optimizes the query efficiency. When tbooktitle ≥ 0.650, the elapsed time
of Embedding-JC-tree is around 38 ms, even lower than that of Base, which shows that our
approach is efficient.

0.001

0.01

0.1

1

10

0.500
0.525

0.550
0.575

0.600
0.625

0.650
0.675

0.700
tbooktitle

Time (sec)

Embedding-JC-tree
Base-tree

Base

(a) Varying tbooktitle

0.001

0.01

0.1

1

10

0.500
0.525

0.550
0.575

0.600
0.625

0.650
0.675

0.700
tyear

Time (sec)

Embedding-JC-tree
Base-tree

Base

(b) Varying tyear

Figure 18: Varying tbooktitle and tyear

We have also evaluated the efficiency of our approach when the k-d tree is built according
to differential privacy. Figure 19 reports the elapsed time of our approach Embedding-DP-
tree and that of the other two benchmarks introduced above. We can see that Embedding-
DP-tree is as efficient as Base. One thing to notice is that in Figure 19, there is an increase
in time from ε = 0.2 to ε = 0.4. We check the generated k-d trees in the experiments, and
find that when ε = 0.2, the average leaf size is 348 while it is 404 for ε = 0.4. This says that
the k-d tree in the former case has more small leaf nodes. Therefore, the former can better
prune irrelevant XML documents and has a better time performance. Still, when ε ≥ 0.6,
the structure of the k-d tree becomes stable with the average leaf size ranging from 443 to
455, and the efficiency of Embedding-DP-tree also becomes stable.

0.001

0.01

0.1

1

10

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

Time (sec)

Embedding-DP-tree
Base-tree

Base

Figure 19: Varying ε

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 223

7 Related Work

Protecting data privacy in relational databases has been extensively investigated [4, 11,
15, 16, 30]. Hacigümüs et al. [15] divide each attribute domain into ranges, and group
tuples into buckets by the ranges. The tuples in the buckets are encrypted, and buckets are
assigned random IDs. Given a query, the buckets with tuple values potentially overlapping
the query are returned to the user. The query results are refined by a post-processing step
by the user to remove false positives. Damiani et al. [11] propose an indexing scheme on
encrypted relational data based on direct encryption and hashing. They further analyze
the tradeoff between the efficiency improved by the indexing and the extra information
disclosed by it.
XML documents contain both structural and content information. Thus, secure query pro-

cessing over encrypted XML documents is more challenging. Proposed solutions in this
area includes [4, 34, 37]. Brinkman et al. [4] use a relational table to index the structural in-
formation of XML documents, and store the table at the third party. Such an approach thus
compromises the privacy of the structure. Wang and Lakshmanan [34] selectively groups
a subtree in the XML document into blocks according to user specified security constraints
to hide the structural information. But it assigns each node (block) an interval, such that
the interval of a child node is contained in that of its parent. Consequently, some structural
information is still leaked. In addition, the approach in [34] assumes that certain nodes in
the XML document are not sensitive and their contents do not need to be encrypted. How-
ever, sometimes it is difficult to decide which data is sensitive and which is not. An attacker
may even be able to infer sensitive information from the partially revealed plaintext infor-
mation [19]. Yang et al. [37] encode each root-to-leaf path in an XML document by a tuple.
The generated tuples are then outsourced to a cloud server running a relational database
system. Their solution supports secure XPath query. However, since each path is encoded
independently, the server cannot process TPQ, which contains multiple correlated paths.
Interested readers can refer to [32] for a more complete survey about the outsourcing of
XML documents.
Query processing over encrypted graph-structured data is also related to our work. [7]

is a scheme, which returns all the graphs that contain the query graph as a subgraph. It
first mines a set of frequent subgraphs (from the whole graph dataset) as features. Then,
given a query graph, it extracts all the features existing in the query. All the graphs in the
dataset containing the features in the query are returned as possible candidates to the user.
Finally, the user prunes all the false positives by a post-processing step. Such an approach
can potentially be applied to search XML documents. However, it only supports structural
matching, and lacks the flexibility of querying on node values. In addition, it may also
incur high false positive rates: for a query not containing any feature, the whole database
would be returned.

8 Conclusion and Future Work

In this paper, we propose an efficient approach to evaluate TPQs on encrypted XML docu-
ments. The key novelty is that we encode the XML documents and TPQs into vectors, such
that the matching between TPQs and documents is reduced to calculating the distance be-
tween their corresponding vectors. We have also proposed optimized techniques to prune
non-matched XML documents in the query processing and thus make our solution scalable
well to large datasets. Furthermore, our approach supports both point and range queries.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

224 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

The extensive experimental results show that it is efficient, and scales well to large datasets.
One possible direction of our future work is to deploy a proxy in the outsourcing frame-

work. The proxy can serve as an agent between the user and cloud server, so that the user
can be relieved of the burden of TPQ encoding and data decryption. Also, in our current
implementation, we only support the static setting, in which all the DTDs are known to the
data owner prior to the encoding of XML documents. We note that it is possible to extend
our solution to tackle the case in which XML documents coming from other new DTDs
are added. Therefore, supporting the extension of the domain hierarchy would be another
possible future direction. Moreover, our solution only supports exact string matching via
hash function. Another possible item on our agenda of future work is thus to include the
functionality of fuzzy string matching. Finally, in this paper, we assume that the database
is static when employing the k-d tree to boost the query efficiency. In practice, it may not
always be true. Being able to deal with the continual updates of XML documents would
be another meaningful yet challenging work, especially in the case of differential privacy,
since the privacy budget is only limited.

9 Acknowledgment

The work reported in this paper has been funded by NSF under award CNS-1016722 and
by the Air Force Office of Scientific Research under Award FA9550-08-1-0265.

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural joins:
A primitive for efficient xml query pattern matching. In In ICDE, pages 141–152, 2002.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon. Xml
path language (xpath) 2.0 (second edition). Technical report, W3C recommendation, December
2010.

[3] S. Boag, D. Chamberlin, M. F. Fernádez, D. Florescu, J. Robie, and J. Siméon. Xquery 1.0: An
xml query language (second edition). Technical report, W3C Recommendation, December 2010.

[4] R. Brinkman, L. Feng, J. Doumen, P. H. Hartel, and W. Jonker. Efficient tree search in encrypted
data. Information Systems Security, 13(3):14–21, 2004.

[5] J. Cao and P. Karras. Publishing microdata with a robust privacy guarantee. Proc. VLDB Endow.,
5(11):1388–1399, July 2012.

[6] J. Cao, P. Karras, P. Kalnis, and K.-L. Tan. Sabre: a sensitive attribute bucketization and redistri-
bution framework for t-closeness. VLDB J., 20(1):59–81, 2011.

[7] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-preserving query over encrypted graph-
structured data in cloud computing. In ICDCS, pages 393 –402, 2011.

[8] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Paparizos. From tree patterns to generalized
tree patterns: On efficient evaluation of xquery. In VLDB, pages 237–248, 2003.

[9] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially private spatial
decompositions. In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering,
ICDE ’12, pages 20–31, Washington, DC, USA, 2012. IEEE Computer Society.

[10] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: im-
proved definitions and efficient constructions. In CCS, pages 79–88, 2006.

[11] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confiden-
tiality and efficiency in untrusted relational dbmss. In CCS, pages 93–102, 2003.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

Efficient Tree Pattern Queries On Encrypted XML Documents 225

[12] J. Dibbern, T. Goles, R. Hirschheim, and B. Jayatilaka. Information systems outsourcing: a
survey and analysis of the literature. DATA BASE, 35(4):6–102, 2004.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In Proceedings of the Third conference on Theory of Cryptography, TCC’06, pages 265–284,
Berlin, Heidelberg, 2006. Springer-Verlag.

[14] K. E. e. Fida K. Dankar. Practicing differential privacy in health care: A review. Transactions on
Data Privacy, 6(1):35–67, 2013.

[15] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the
database-service-provider model. In SIGMOD, pages 216–227, 2002.

[16] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In VLDB,
pages 720–731, 2004.

[17] S. P. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The price of privately releasing
contingency tables and the spectra of random matrices with correlated rows. In STOC, pages
775–784, 2010.

[18] P. Kilpeläinen. Tree matching problems with applications to structured text databases. Ph.D.
dissertation Report A-1992-6, University of Helsinki, Finland, November 1992.

[19] A. Kundu and E. Bertino. Structural signatures for tree data structures. PVLDB, 1(1):138–150,
2008.

[20] J. Lee and C. Clifton. How much is enough? choosing for differential privacy. In ISC, pages
325–340, 2011.

[21] J. Lee and C. Clifton. Differential identifiability. In KDD, pages 1041–1049, 2012.

[22] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-
diversity. In ICDE, pages 106–115, 2007.

[23] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy be-
yond k-anonymity. In ICDE, page 24, 2006.

[24] DBLP Computer Science Bibliography. http://www.cs.washington.edu/research/xmldatasets/.

[25] Stock Quotes. http://research.cs.wisc.edu/niagara/data/cq/.

[26] University Courses. http://www.cs.washington.edu/research/xmldatasets/.

[27] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages 94–103, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[28] M. M. Moro, Z. Vagena, and V. J. Tsotras. Tree-pattern queries on a lightweight xml processor.
In VLDB, pages 205–216, 2005.

[29] M. Nabeel, N. Shang, and E. Bertino. Efficient privacy preserving content based publish sub-
scribe systems. In SACMAT, pages 133–144, 2012.

[30] D. E. Robling Denning. Cryptography and data security. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1982.

[31] L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppression.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):571–588, Oct. 2002.

[32] O. Ünay and T. I. Gündem. A survey on querying encrypted xml documents for databases as a
service. SIGMOD Record, 37(1):12–20, 2008.

[33] S. Wang, D. Agrawal, and A. El Abbadi. A comprehensive framework for secure query process-
ing on relational data in the cloud. In Secure Data Management, pages 52–69, 2011.

[34] W. H. Wang and L. V. S. Lakshmanan. Efficient secure query evaluation over encrypted xml
databases. In VLDB, pages 127–138, 2006.

[35] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted
databases. In SIGMOD, pages 139–152, 2009.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

226 Fang-Yu Rao, Jianneng Cao, Mehmet Kuzu, Elisa Bertino, Murat Kantarcioglu

[36] L. Xu, T. W. Ling, and H. Wu. Labeling dynamic xml documents: An order-centric approach.
IEEE Trans. Knowl. Data Eng., 24(1):100–113, 2012.

[37] Y. Yang, W. Ng, H. L. Lau, and J. Cheng. An efficient approach to support querying secure
outsourced xml information. In CAiSE, pages 157–171, 2006.

TRANSACTIONS ON DATA PRIVACY 6 (2013)

