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Abstract. Traditional perturbative statistical disclosure control (SDC) approaches such as microag-
gregation, noise addition, rank swapping, etc, perturb the data in an “ad-hoc” way in the sense that
while they manage to preserve some particular aspects of the data, they end up modifying others.
Synthetic data approaches based on the fully conditional specification data synthesis paradigm, on
the other hand, aim to generate new datasets that follow the same joint probability distribution as the
original data. These synthetic data approaches, however, rely either on parametric statistical mod-
els, or non-parametric machine learning models, which need to fit well the original data in order to
generate credible and useful synthetic data. Another important drawback is that they tend to per-
form better when the variables are synthesized in the correct causal order (i.e., in the same order as
the true data generating process), which is often unknown in practice. To circumvent these issues,
we propose a fully non-parametric and model free perturbative SDC approach that approximates
the joint distribution of the original data via sequential applications of restricted permutations to
the numerical microdata (where the restricted permutations are guided by the joint distribution of
a discretized version of the data). Empirical comparisons against popular SDC approaches, using
both real and simulated datasets, suggest that the proposed approach is competitive in terms of the
trade-off between confidentiality and data utility.
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1 Introduction

In this paper we address the problem of statistical disclosure control (SDC) for data pub-
lishing in the particular context of numerical microdata files. (That is, where the data is
organized into a file with the rows usually containing the data records and columns con-
taining the attributes/variables measured for each data record.) Such datasets are widely
used in most fields of science, and the current trend towards open and transparent science
means that there is an ever increasing need for publishing datasets supporting scientific
research. Often times, the research involves privacy sensitive information, and these sup-
porting datasets need to be masked (perturbed) in order to reduce disclosure risk before
they can be shared publicly. Quite importantly, the amount of perturbation should ideally
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be enough to reduce the disclosure risk to an acceptable level, while retaining as much sci-
entific utility as possible. (Business operations represent another case in point for the need
of SDC for data publishing of microdata.)

While there is a rich literature on SDC methodology for numeric microdata [25, 13], most
of the perturbation approaches are “ad-hoc” in the sense that while they manage to pre-
serve some particular aspects of the data, they end up modifying others. (E.g., while ap-
plication of zero mean additive Gaussian noise to a variable approximately preserves its
mean, it also increases its variance.) Even more principled perturbative approaches, such
as data shuffling [18], are unable to preserve non-monotonic associations in the data.

Fully conditional specification (FCS) synthetic data approaches, on the other hand, aim
to generate new datasets that follow the same joint probability distribution as the original
data [11]. These approaches, however, rely on parametric statistical models, whose pa-
rameters need to be estimated from the data, or rely on non-parametric machine learning
models, which need to fit well the data in order to generate credible and useful synthetic
data. Another important drawback of these approaches is that they tend to perform better
when the variables are synthesized in the correct causal order (i.e., in the same order as the
true data generating process), which is often unknown in practice.

In this paper, we propose a fully non-parametric and model free data perturbation ap-
proach that circumvents important drawbacks of both perturbative and synthetic data
based SDC methods. The approach, denoted sequential joint probability preserving data
shuffling (SJPPDS), is based on sequential applications of restricted permutations to the nu-
merical microdata, which are guided by the joint probability distribution of a discretized
version of the data. As such, the approach is able to approximate the joint probability
distribution of the original data without relying on parametric or non-parametric models,
and without requiring any domain knowledge about the true data generating process. In
practice, this means that the approach can be effective even when applied to small and
noisy datasets, which tend to be challenging for synthetic data approaches that depend
on models for fitting the data. Furthermore, in addition to approximately preserving the
joint association structure of the data, the SJPPDS approach, by construction, produces a
masked/perturbed dataset with the exact same marginal distributions as the original data.
We implement two versions (full and simplified) of the SJPPDS method (described in Al-
gorithms 1, 2, and 3 of Section 3).

Following [8], we evaluate the tradeoff between data confidentiality and utility using a
combination of multiple disclosure risk (DR) and information loss (IL) metrics. (Adoption
of multiple metrics is generally advisable, since different metrics capture different aspects
of the similarity between the original and masked datasets.) We compare the proposed
approach against popular SDC approaches, using two real business microdata datasets, as
well as, 60 simulated datasets. Our experimental results favor the SJPPDS approaches in
terms of the trade-off of general data utility and disclosure risk.

2 Related work

Statistical disclosure control (SDC) is a mature field with many well established methods
for the masking of numerical microdata [25, 11, 13]. Traditional perturbative methods
include: (i) microaggregation [5, 23], where the original data records are first combined
into small aggregate groups before their values are replaced by the mean of the aggregate
groups; (ii) noise addition [2], where masking is obtained by adding (independent or cor-
related) noise to the original data; and (iii) rank-swapping [17], where each variable is first
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ranked in ascending order before each ranked value is swapped with another ranked value
randomly chosen within a restricted range (such that the ranks of two swapped values
cannot differ by more than a fixed percentage of the total number of records).

Synthetic data approaches have also been proposed for SDC, where instead of directly
changing the original data values, completely new values are sampled from appropriate
probability distributions that, hopefully, capture the essential statistical properties of the
original data. For instance, under the assumption of multivariate normality, information
preserving statistical obfuscation (IPSO) methods [1, 4, 14] aim to generate synthetic data
that preserves the outputs of regression models (e.g., regression coefficients and/or covari-
ance matrices).

Conceptually, the analytical properties of the original data are fully captured by the joint
probability distribution (j.p.d.) of all variables in the dataset. The perturbative and syn-
thetic data SDC approaches listed above, however, are not able to preserve the j.p.d. of the
data. Fully conditional specification (FCS) methods [11], on the other hand, aim exactly at
simulating synthetic data with the same j.p.d. as the original data. The idea is to fully fac-
torize the j.p.d. of the data, P (X1, X2, X3, . . . , Xp), into a series of conditional distributions,
P (X1 | X2, . . . , Xp)P (X2 | X3, . . . , Xp) . . . P (Xp), and then sequentially model and simu-
late one variable at a time, conditionally on the previous ones. The quality of the synthetic
data generated using FCS methods depends, however, on the quality of the original data
(as the conditional distribution models need to be estimated from the original data). While
parametric models can be used to estimate the conditional distributions, these models need
to be chosen very carefully, and the FCS implementation based on the classification and re-
gression tree (cart) model [21] is often seen as the go to approach for FCS data synthesis, as
it can flexibly model unusual data distributions and capture non-linear associations with-
out requiring specification of the conditional distributions, and has been shown to provide
the best empirical results in practice [12, 19]. Despite these advantages, the quality of cart
based data synthesis is still influenced by the order of the variables. While there is no stan-
dard way to select the variable order, the general recommendation is to try to emulate the
causal ordering behind the data generating process giving rise to the original data. The
problem, however, is that, in many applications this knowledge is not available.

Finally, a related approach to the shuffling methods proposed in this paper is the data
shuffling procedure proposed by Muralidhar and Sarathy [18], which we denote here as d-
shuffle. This procedure is based on the conditional distribution approach to SDC, and the
basic idea is to generate synthetic data values from the conditional distribution of the con-
fidential variables given the non-confidential variables and then perform reverse-mapping
of these synthetic values to the values of the original confidential variables. (Where the re-
verse mapping is obtained by replacing the ordered values of the synthetic variables by the
ordered values of the original confidential variables). In practice, the synthetic data values
are sampled from a simplified copula-based approach which only requires the estimation
of the rank-order correlation matrix of the original (confidential and non-confidential) vari-
ables and the ranks of the non-confidential variables. Importantly, in situations where all
variables in the data are confidential, the approach can still be applied by simply generat-
ing an independent multivariate normal data with mean zero and covariance matrix set to
the estimated rank-order correlation matrix and then reverse-map this synthetic data set to
the original data. Similarly, to the SJPPDS methods proposed in this paper, the d-shuffle
approach also preserves the marginal distribution of the data and tends to achieve low dis-
closure risk and high data utility. One important caveat of the d-shuffle procedure is that it
is unable to preserve complex non-monotonic associations in the data, as such associations
cannot be well captured by rank-order correlations. (Figure A1 in the Appendix provides
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an illustrative example of this issue.) Furthermore, noisier datasets, for which it can be dif-
ficult to obtain a good estimate of the rank-order correlation matrix can also be challenging
for the d-shuffle approach.

3 The proposed approach

Before we describe the SJPPDS approach we first illustrate (using a toy example) how re-
stricted permutations can be used as a data perturbation mechanism that (approximately)
preserves the associations of numerical data. Consider the data from two highly correlated
numerical variables, X1 and X2, in rows 1 and 2 of Table 1, simulated from a bivariate nor-
mal distribution. Here we describe how to perform restricted permutations of the X1 data
relative to the X2 variable.

Table 1: Restricted permutation example
X1 8.87 9.57 9.61 9.36 9.75 10.51 10.01 9.67 10.29 11.42 12.11 11.64
X2 9.66 10.09 10.52 10.54 10.80 11.19 11.24 11.47 11.61 11.96 12.23 12.39
C2 1 1 1 1 2 2 2 2 3 3 3 3
X⋆

1 9.61 9.36 8.87 9.57 9.75 10.51 9.67 10.01 11.64 12.11 10.29 11.42
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Figure 1: Restricted permutation example.

The first step is to obtain a categori-
cal version of the X2 variable, denoted
C2, by discretizing the X2 data into
nc categories. In the example in Ta-
ble 1 we discretize X2 into nc = 3 cat-
egories/levels, denoted as, “1”, “2”,
and “3” as shown in the C2 row. (The
discretization is performed by split-
ting the range of the X2 data into 3
equally sized bins, and assigning the
categorical labels “1”, “2”, and “3” to
the X2 values that fall in each of these
bins.) A restricted permutation of the
X1 data is then obtained by separately shuffling the values of the X1 data within each level
of the C2 variable, as shown in the fourth row of Table 1, where the shuffled X1 values are
denoted by X⋆

1 . Figure 1 plots the values X1 against X2 for the original data (panel a) and
for the restricted permutation data (panel b). Clearly, the restricted permutation approach
preserves well the association between the X1 and X2 variables. Observe, as well, that the
marginal distribution of the shuffled data X⋆

1 is, by construction, identical to the marginal
distribution of the original data X1.

An important tuning parameter of the restricted permutation approach is the number of
categories/levels, nc, used in the discretization of X2. The larger the nc, the better is the
association preservation, as illustrated in Figure 2, where we now simulate n = 10, 000
records from the same bivariate normal distribution as in Table 1 (µ = (10, 11)T and σ11 =
1, σ22 = 1, and σ12 = 0.9).

On the other hand, the adoption of large values for the nc parameters will also lead to
increased disclosure risk, as the larger the nc, the smaller the overall amount of data shuf-
fling (and in the extreme case when nc equals the number of records in the data, there is no
shuffling of the data).
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Figure 2: Effect of the number of categories/levels parameter, nc, on the preservation of the
association between X1 and X2 obtained by the restricted permutation approach.

3.1 Sequential joint probability preserving data shuffling

We now describe how to perform (approximate) joint probability preserving data shuffling.
The basic idea is to create a categorical version of the numeric microdata and then perform
restricted permutations of the numeric data guided by the fully factorized joint probability
distribution of the categorical data,

P (C1, C2, . . . , Cp) = P (C1 | C2, . . . , Cp)P (C2 | C3, . . . , Cp) . . . P (Cp−1 | Cp)P (Cp) . (1)

Algorithm 1 describes the approach in detail. (Note that it can be seen as a fully non-
parametric, model free, and perturbative analog of the fully conditional specification data
synthesis paradigm.)

To fix ideas, suppose that the numerical microdata, X , contains 4 attributes, X1, X2, X3,
and X4, each of which is discretized into nc = 10 classes (named as “1”, “2”, . . . , “10”)
in order to produce the associated categorical variables C1, C2, C3, and C4. Suppose, as
well, that the microdata contains 10,000 records, so that both the numeric microdata and
its categorical version, C, have dimension n = 10, 000 by p = 4. Now, consider the full
factorization of the joint probability distribution of the categorical data,

P (C1, C2, C3, C4) = P (C1 | C2, C3, C4)P (C2 | C3, C4)P (C3 | C4)P (C4) . (2)

Application of Algorithm 1 to the numeric microdata goes as follows. The outer for-loop
(starting at line 4) captures the separate terms of equation (2). For i = 1, the algorithm
deals with the P (C1 | C2, C3, C4) term. Line 5 creates the C∗ matrix by selecting columns
2, 3, and 4 of C. Line 6 creates the vector of combinations of the categorical variables in
C∗ (lcombs) by pasting together the levels of the C2, C3, and C4 variables into a character
string. (For example, if the values of C2, C3, and C4 for the first record in the data are given,
respectively, by “9”, “2”, and “6”, then the value at the first position of lcombs is given by
the string “9.2.6”. Note that for nc = 10 there are at most 10 × 10 × 10 = 1, 000 possible
distinct combinations of levels.) Line 7 obtains the unique combinations/strings observed
in the data (ucombs), and line 8 counts the number of unique combinations (nu) in the
data. The inner for-loop of Algorithm 1 (starting at line 9) effectively performs a restricted
permutation of X1 relative to the combination of the C2, C3, and C4 variables and generates
the shuffled numeric data as follows. For each one of the unique combinations in ucombs,
line 10 finds the indexes of the records that share that combination, and lines 11 and 12
shuffle the numerical microdata values of variable X1 within these indexes. After running
through all unique combinations the result is a dataset where the values of X1 have been
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Algorithm 1: Joint probability preserving data shuffling - full version (JPPDS-f)
Data: Microdata, X ; categorical version of the microdata, C

1 Find the number of attributes, p, of X , i.e., p← NumberOfColumns(X)
2 Find the number of records, n, of X , i.e., n← NumberOfRows(X)
3 Initialize the matrix with shuffled data with the original microdata, i.e., Xs ←X
4 for i in 1, . . . , p-1 do
5 Create a new matrix, C∗, by selecting columns of C ranging from i+ 1 until p, i.e.,

C∗ ← C[, (i+ 1) : p]
6 Create a vector of length n containing the character strings obtained by pasting

together the columns of C∗. This vector contains the combinations of the
categorical variables in C∗, and is denoted lcombs. Note that some of the
combinations in this vector can be repeats

7 Get the vector containing only the unique combinations of the lcombs vector, i.e.,
ucombs← Unique(lcombs)

8 Get the length of the ucombs vector, i.e., nu ← Length(ucombs)
9 for j in 1, . . . , nu do

10 Find the indexes of the rows of C∗ that have the variable combination in
ucombs[j], i.e., idx←Which(lcombs == ucombs[j])

11 Obtain a randomly shuffled version of the indexes in idx, i.e.,
idxs ← Shuffle(idx)

12 For columns ranging from 1 to i, replace the data in the rows of Xs indexed by
idx by the data in rows idxs of X , i.e., Xs[idx, 1 : i]←X[idxs, 1 : i]

13 Randomly shuffle the rows of Xs, i.e., Xs ←Xs[Shuffle(1 : n), ].
Result: Return the shuffled dataset Xs

shuffled in a way that preserves (approximately) their association with the {X2, X3, X4}
variables.

For i = 2, the algorithm deals with the P (C2 | C3, C4) term. Now, line 5 creates the C∗

matrix by selecting columns 3 and 4 of C. Line 6 pastes together variables C3 and C4, and
now there are at most 10 × 10 = 100 possible combinations in ucombs. Quite importantly,
note that after the algorithm selects the indexes of the records that will be shuffled (lines
10 and 11), rather than shuffling the X2 values alone, it shuffles both the X2 and X1 values
together, as described in line 12. This is done to preserve the association between all four
variables, rather than just the association between X2 and {X3, X4}.

For i = 3, the algorithm deals with the P (C3 | C4) term. Now, C∗ corresponds to col-
umn 4 alone, and there are only 10 possible combinations in ucombs. For each level of the
categorical variable C4, after the algorithm selects the indexes of the records that will be
shuffled (lines 10 and 11), it shuffles both the X3, X2 and X1 values together (line 12) to
preserve the associations between all four variables.

Finally, note that line 13 of Algorithm 1 performs one last random shuffle of the rows of
the matrix Xs (i.e., randomly shuffle the records of Xs), because after the completion of
steps 1 to 12, the last column of Xs is still identical to the last column of X .

It is important to point out that the amount of shuffling performed by Algorithm 1 in-
creases as i increases from 1 to p − 1 (line 4), simply because the number of possible com-
binations of the levels of the C variables in the ucombs vector, nu, decreases as the number
of number of columns of the C∗ matrix decreases. (In the above toy example, nu ≤ 1000
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in the first iteration, nu ≤ 100 in the second, and nu ≤ 10 in the third.) Note that in sit-
uations where the number of records is smaller than the number of combinations in the
ucombs vector, we have that the number of records sharing the same combination of cate-
gorical variables in ucombs will be 1 in most cases, so that Algorithm 1 barely performs any
shuffling during its first iterations.

This observation suggests that we might be able to simplify Algorithm 1 to improve its
computational efficiency without sacrificing too much its performance. Algorithm 2 pro-
vides a simplified version where we remove the outer for-loop and only shuffle together the
data of the first p − 1 variables within each level of the last variable. In this case, we are
essentially leveraging the following factorization of the joint probability distribution of the
categorical variables,

P (C1, C2, . . . , Cp−1, Cp) = P (C1, C2, . . . , Cp−1 | Cp)P (Cp) , (3)

to guide the restricted permutations of the data.

Algorithm 2: Joint probability preserving data shuffling - simplified version (JPPDS-s)
Data: Microdata, X ; categorical version of the microdata, C

1 Find the number of attributes, p, of X , i.e., p← NumberOfColumns(X)
2 Find the number of records, n, of X , i.e., n← NumberOfRows(X)
3 Initialize the matrix with shuffled data with the original microdata, i.e., Xs ←X
4 Get the last column of C, i.e., Cp ← C[, p]
5 Get the unique values of Cp, i.e., Cpu ← Unique(Cp)
6 Get the length of the Cpu vector, i.e., nu ← Length(Cpu)
7 for j in 1, . . . , nu do
8 Find the indexes of Cp that have the value in Cpu[j], i.e.,

idx←Which(Cp == Cpu[j])
9 Obtain a randomly shuffled version of the indexes in idx, i.e., idxs ← Shuffle(idx)

10 For the first p− 1 columns, replace the data in the rows of Xs indexed by idx by
the data in rows idxs of X , i.e., Xs[idx, 1 : (p− 1)]←X[idxs, 1 : (p− 1)]

11 Randomly shuffle the rows of Xs, i.e., Xs ←Xs[Shuffle(1 : n), ].
Result: Return the shuffled dataset Xs

It is important to point out, however, that because the data in the first p − 1 variables
are shuffled together by Algorithm 2, we have that essentially only the data in the last
column is shuffled relative to the first p− 1 columns. Hence, in order to make sure that the
data in all columns are shuffled relative to each other we actually implement a sequential
version of Algorithm 2 where it is sequentially applied to shifting orderings of the columns
of the data, as described in Algorithm 3. (Note that it is also usually beneficial to use the
sequential approach described in Algorithm 3 in conjunction with Algorithm 1, since the
full JPPDS approach implemented in Algorithm 1 can still fail to adequately shuffle the
data in the first columns of the dataset.)

Going back to the toy example with four variables, we have that line 3 of Algorithm 3
shuffles X4 relative to {X1, X2, X3}, while the for-loop in lines 4 to 7 sequentially apply
the JPPDS (full or simplified) to the following data orderings of the data, {X2, X3, X4, X1},
{X3, X4, X1, X2}, and {X4, X1, X2, X3}, so that all variables are shuffled relative to each
other. (That is, X4 is shuffled relative to {X1, X2, X3} in line 3; X1 is shuffled relative
to {X2, X3, X4} when i = 1 in the for-loop starting in line 4; X2 is shuffled relative to
{X3, X4, X1} for i = 2; and X3 is shuffled relative to {X4, X1, X2} for i = 3.)
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Algorithm 3: Sequential joint probability preserving data shuffling (SJPPDS)
Data: Microdata, X ; number of classes/levels, nc

1 Find the number of attributes, p, of X , i.e., p← NumberOfColumns(X)
2 Create the categorical version of X , denoted C, by discretizing each column of X

into nc categories: C ← CategorizeData(X, nc)
3 Generated the masked data, X⋆, by using the JPPDS algorithm:

X⋆ ← JointProbabilityPreservingDataShuffling(X,C)
4 for i in 1, . . . , p - 1 do
5 Change the order of the columns of X⋆, so that the first column is placed last, i.e.,

X⋆ ←X⋆[, c(2 : p, 1)]
6 Update the categorical version of the masked microdata, i.e.,

C⋆ ← CategorizeData(X⋆, nc)
7 Update the masked microdata, i.e.,

X⋆ ← JointProbabilityPreservingDataShuffling(X⋆,C⋆)

8 Restore column order to the order in the original dataset, i.e., X⋆ ←X⋆[, c(2 : p, 1)]
Result: Return the masked dataset X⋆

4 Performance evaluation

In this section we present comparisons of the proposed method against data perturbation
approaches, as well as, a synthetic data method, in both real and simulated data experi-
ments. For the real data experiments, we use 2 business microdata datasets, Census and
Tarragona, which have been traditionally used to evaluate SDC approaches for numerical
microdata. Both datasets are available with the sdcMicro R package [24]. (Note that the
Census dataset is named as CASCrefmicrodata in the sdcMicro package.) The Census data
is composed of 1080 records on 13 variables (but we only use 12 of the Census dataset vari-
ables for our illustrations because one of the variables, PEARNVAL, is a linear combination
of the other 12 variables, what causes problems for the calculation of some of the informa-
tion loss metrics used in our evaluations. In practice, we can always apply the masking
methods to the 12 variables and simply compute the masked version of the PEARNVAL
variable from the other variables.) The Tarrogana data is composed of 834 records on 13
variables. In addition to being relatively small, both datasets contain variables with very
different scales. Furthermore, the variables in the Tarragona dataset show fairly skewed
data distributions and contain outliers. For the simulated data illustrations, we performed
2 experiments simulating data from multivariate normal and correlated exponential vari-
ables. In each experiment, we simulate 30 distinct X matrices of dimension n = 500 by
p = 10 with different location, scale, and correlation strengths. (See Appendix A1.1 for
details.)

4.1 Comparisons against data perturbation approaches

We compared the performance of the proposed method against the following widely used
data perturbation approaches in the SDC field: (i) microaggregation, implemented using
three distinct grouping methods (namely, the maximum distance to average vector (mdav)
method [5], the principal component analysis (pca) method, and the projection pursuit
principal components (pppca) method [23]); (ii) noise addition [2] based on independent
additive noise and correlated noise; (iii) rank-swapping [17] based on the percentage of
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ranks to be swapped; and (iv) data shuffling [18] (denoted here as d-shuffle). All perturba-
tion methods were implemented using the sdcMicro R package [24], with the exception of
the d-shuffle approach which was implemented as described in Appendix A1.2. (Note that
while sdcMicro package provides an implementation of the data shuffling approach, the
package’s implementation does not handle the case where all variables are confidential.)

In all experiments, we evaluated the tradeoff between data confidentiality and data utility
using a combination of 3 disclosure risk and 3 information loss metrics. Disclosure risk
(DR) metrics evaluate either re-identification disclosure risk (i.e., the risk that an intruder
might be able to determine the subject/entity to whom a given masked data record belongs
to) or attribute disclosure risk (e.g., the risk that an intruder can learn about the value of
confidential variables). We adopt distance-based record linkage (DBRL) [20, 8] to quantify
re-identification disclosure risk, and rank-based interval disclosure (RID) [8] and standard
deviation-based interval disclosure (SDID) [15] to quantify attribute disclosure risk. (See
Appendix A1.3 for a brief description of these metrics.)

Information loss (IL) metrics can be classified as either general or analysis specific mea-
sures [26]. General measures attempt to either directly measure statistical distances be-
tween the masked and original datasets, or to measure the closeness of specific distribu-
tion parameters (e.g., moments, quantiles, and other summary statistics). Analysis specific
measures, on the other hand, compare the results from specific analysis performed in the
original and masked datasets (e.g., compare the point estimates and confidence intervals
of a regression analysis). Since our goal is to publish masked datasets supporting scien-
tific research or business operations, which might be used by others in unanticipated ways,
we adopted general utility metrics in our evaluations. The selected IL measures included
the propensity-score based information loss (PS) [26], the probabilistic information loss
(PIL) [16], and the covariance bounded information loss metric [10]. Appendix A1.4 pro-
vides further details about these selected metrics.

Quite importantly, note that all 3 DR metrics selected for our comparisons (namely, DBRL,
RID and SDID) can only, strictly speaking, be applied to masking methods for which there
exists a mapping between the original, xij , and masked values, x⋆

ij . While this mapping
is (at first sight) destroyed by the data shuffling process employed by the SJPPDS and d-
shuffle approaches, in practice, it is still possible to find a mapping between the original
and perturbed data values by sorting the X and X⋆ datasets according to any arbitrary
attribute (column) of the data before computing the DR metrics (analogously to the work
of [10]). The precise algorithm is presented in Appendix A1.5 (see Algorithm 4), but the
basic idea is to: (i) separately sort the original and masked datasets according to the value
of one of their attributes; (ii) compute the selected metric using the sorted datasets; and (iii)
repeat steps (i) and (ii) for all attributes, and compute the maximum value across all sort-
ings (i.e., select the most conservative estimate of disclosure risk). Note that this procedure
is justified under the permutation paradigm for data anonymization proposed by [7] (and
is analogous to the procedure for the computation of the CM3 metric proposed in [10],
which is used for the evaluation of disclosure risk in synthetic datasets - see Appendix
A1.5 for further details). Observe, as well, that this procedure generates more conservative
DR metrics (i.e., larger disclosure risks) for the SJPPDS and d-shuffle methods than the di-
rect calculation of the metrics using the unsorted datasets X and X⋆ (see Figures A2, A3,
and A4 in the Appendix for an illustration). In our evaluations we adopt this “worse case
sorted approach” for the evaluation of the SJPPDS and d-shuffle methods, but the standard
(unsorted) approach for the evaluation of the microaggregation, noise addition, and rank
swapping approaches.

Following reference [8], we combine all these disclosure risk and information loss metrics
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into a single formula (score) meant to capture the overall confidentiality/utility tradeoff
and provide an overall ranking of these SDC methods. Our overall score formula is given
by,

overall score =

[
DBRL

6
+

RID
6

+
SDID
6

]
+

[
PS
6

+
PIL
6

+
CBIL
6

]
, (4)

which gives equal weights for the combination of DR metrics (1/6 + 1/6 + 1/6 = 0.5) and
combination of IL metrics (1/6 + 1/6 + 1/6 = 0.5). Because the PS metric range is between
[0, 0.25] we multiply it by 4, so that it is also bounded between 0 and 1, as all the other
metrics used for the computation of the overall score in (4). Note that lower overall scores
are preferred since they indicate lower disclosure risks and lower information losses.

For each of the masking methods, we used the above score formula to:

1. First select the best parameter across a grid of 30 tuning/perturbation parameter val-
ues (under the constraint that the DBRL metric is below a given fixed threshold).

2. Then to compare the overall performance of the SDC methods based on the selected
best parameter score.

Note that we only select tuning parameters that produce DBRL values below a given fixed
threshold, because, in practice, we are not interested in masking methods that preserve
well data utility at the expense of high disclosure risks. Figure A5 in the Appendix pro-
vides an illustrative example of the selection of best tuning/perturbation parameter values
conditional on different DBRL thresholds. In our comparisons we adopt a DBRL threshold
of 0.2. (We choose this relatively high threshold because the noise-addition methods gener-
ated high values of DBRL in the simulated datasets and choosing a lower threshold would
lead to discarding these methods from the comparisons. In practice, however, one might
be interested in lower threshold values.)

For both the real and simulated data experiments, we adopted the following tuning (per-
turbation) parameter grids:

• Aggregation parameters in the range {2, 3, . . . , 31} for the microaggregation methods.

• Noise percentage parameter in the range {1, 5, 9, 13, . . . , 117}% for the noise addition
methods.

• Swap percent parameter in the range {2, 4, 6, . . . , 60}% for rank-swapping.

• Number of classes parameter (nc) in the range {10, 20, . . . , 300} for both the SJPPDS
methods.

Note that the d-shuffle approach does not require any tuning.
Figure 3 reports the tradeoffs between information loss and disclosure risk across the grid

of tuning/perturbation parameter values for each one of the SDC methods in the Census
dataset. In all panels, the blue curve represents the average information loss score,

average information loss =
PS
3

+
PIL
3

+
CBIL
3

, (5)

the red curve represents the average disclosure risk score,

average disclosure risk =
DBRL

3
+

RID
3

+
SDID
3

, (6)
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Figure 3: Tradeoff between information loss and disclosure risk in the Census dataset.

the black curve represents the overall score in equation 4 (i.e., the average of the average in-
formation loss and average disclosure risk scores), and the grey curve represents the DBRL
metric. (Note that each point on each of these curves actually corresponds to the median
value from the 30 experiment replications.) The grey horizontal line shows the selected
DBRL threshold (i.e., 0.2), while the grey vertical line shows the selected best parameter
value (under the constraint that DBRL is less than 0.2). Figure A6 in the Appendix shows
the analogous plot for the Tarragona data experiments. (Due to space limitations, we do
present the condidentialy/utility tradeoff plots for the simulated datasets, as those would
require a separate plot for each one of the 60 simulated datasets.)

Figure 4 reports the results from all experiments, comparing the overall scores of each of
the SDC methods. For the real data experiments (panels a and b), the boxplots report the
results from 30 replications of the experiments based on the best selected tuning parameter
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(with the exception of the microaggregation methods, which are deterministic, and there-
fore based on a single experiment run). For the simulated data experiments (panels c and
d) the boxplots report the scores from the 30 distinct simulated datasets. (Each method is
first evaluated on a grid of 30 distinct tuning parameter values, but the boxplots only re-
port the results based on the best selected tuning/perturbation parameter.) In terms of the
data confidentiality/utility tradeoff measured by the overall score, the SJPPDS approaches
outperformed all other methods in all experiments.
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Figure 4: Data perturbation methods results from the real and simulated data experiments.
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Figure 5: Metrics comparison for data perturbation methods in the Census data experi-
ment.

Figures 5, 6, 7, and 8 present more detailed descriptions of the experimental results look-
ing at each of the DR and IL metrics separately for each one of the experiments. The box-
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Figure 6: Metrics comparison for data perturbation methods in the Tarragona data experi-
ment.
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Figure 7: Metrics comparison for data perturbation methods in the simulated gaussian data
experiment.
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Figure 8: Metrics comparison for data perturbation methods in the simulated exponential
data experiment.

plots again report the metric values based on the best selected tuning/perturbation param-
eter across the 30 replications of the experiments. These figures show that no single SDC
method outperformed all others across all DR and IL metrics.

In terms of DBRL, Figures 5a, 6a, 7a, and 8a show that the d-shuffle and SJPPDS meth-
ods tended to outperform all other methods. In terms of RID, Figures 5b, 6b, 7b, and 8b
show that the SJPPDS approaches produced higher disclosure risks than the other meth-
ods, although the disclosure risks were still fairly low (e.g., below 0.04 in all experiments).
Similarly, for the SDID metric, Figures 5c, 6c, 7c, and 8c show that the SJPPDS approaches
tended to produce higher disclosure risks than the other methods, although they outper-
formed the microaggregation methods on the Tarragona dataset (Figure 6c) and, again,
tended to be fairly low (e.g., below 0.015 in all experiments).

In terms of IL metrics, panels d, e, and f of Figures 5, 6, 7, and 8 show that the SJPPDS
methods tended to outperform all other methods in terms of the IL metrics, being con-
siderably better w.r.t. the PIL metric. Note as well that for the CBIL metric (panel f), the
noise addition with correlated errors method (noise-c) also tended to perform well in all
datasets (although the SJPPDS still performed slightly better, as shown in Table A1 in the
Appendix). The fact that the noise-c method performs well according to this metric is not
surprising, given that this perturbation method actively preserves the correlation structure
of the data and the CBIL metric measures how well the correlation structure is preserved.

Hence, all in all, the better overall performance of the SJPPDS approaches (Figure 4) ap-
pears to be explained by their ability to trade a small increase in attribute disclosure risk
(measured by RID and SDID) by considerable lower levels of information loss (measured
by the PS, PIL, and CBIL), while still maintaining a relatively low re-identification disclo-
sure risk (measured by DBRL).
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4.2 Comparisons against synthetic data approaches

We compared the performance of the proposed method against the cart approach for syn-
thetic data generation [21], implemented with the synthpop R package [19]. We did not
pursue comparisons against IPSO methods because the assumption of multivariate nor-
mality across all variables made by these approaches is rather strong, and almost never
realized in real settings (it is certainly violated in the two real datasets we evaluated).

For these comparisons we adopted the same tuning parameter grid for the SJPPDS ap-
proaches as before. For the cart approach, whose performance can be influenced by the
order of the variables during the data synthesis we adopted 30 distinct randomly drawn
variable orderings.

For these comparisons against synthetic data methods, disclosure risk was now measured
as,

DR3 = 1− CM3 ,

where CM3 corresponds to the permutation model based confidence metric for synthetic
datasets proposed in [10] (and described in Appendix A1.3). As before, we evaluate the
trade-off between disclosure risk and information loss using an overall score calculated as
a combination of metrics,

overall score =

[
DR3
2

]
+

[
PS
6

+
PIL
6

+
CBIL
6

]
, (7)

which gives equal weights to the DR3 metric (0.5) and combination of IL metrics (1/6 + 1/6
+ 1/6 = 0.5).

Figure 9 reports the results from all experiments. The top panels show boxplots comparing
the overall scores of each of the methods. As before, for the real data experiments (panels a
and b), the boxplots report the results from 30 replications of the experiments based on the
best selected tuning parameter, while for the simulated data experiments (panels c and d)
the boxplots report the scores from the 30 distinct simulated datasets. (Again, each method
is first evaluated on a grid of 30 distinct tuning parameter values, but the boxplots only re-
port the results based on the best selected tuning/perturbation parameter.) In terms of the
data confidentiality/utility tradeoff measured by the overall score, the SJPPDS approaches
outperformed the cart method in all experiments.

It is interesting to notice that the SJPPDS methods tended to outperform the cart approach
by a larger margin in the real datasets than in the simulated datasets (note the larger gaps
between the overall scores of the SJPPDS methods relative to the cart approach in panels a
and b of Figure 9 when compared to panels c and d). This could potentially be explained
by the fact that the real data is considerably nosier than the simulated datasets, making it
more challenging to obtain regression trees that fit well the data.

Additionally, as pointed out before, an important drawback of data synthesis methods
based on fully conditional specification (such as cart) is that the quality of the synthetic
data depends on the order of the variables used for the data synthesis. The SJPPDS ap-
proaches, on the other hand, do not suffer from this caveat. To illustrate this point, the
bottom panels of Figure 9 compare the overall scores of the cart model computed over 30
distinct orderings of the variables, against the SJPPDS approach computed using the same
distinct orderings as the cart model (and using the best selected number of classes/labels
tuning parameter). The experiments clearly show that the results from the SJPPDS ap-
proaches tend to be less variable (note the narrower boxplots) than the results from the cart
model.
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Figure 9: Synthetic data method results from the real and simulated data experiments.

Figures 10, 11, 12, and 13 present more detailed descriptions of the experimental results
looking at each of the DR and IL metrics separately for each one of experiments. The
boxplots again report the metric values based on the best selected tuning/perturbation
parameter across the 30 replications of the experiments. These figures show that no method
consistently outperformed the others for the DR3 metric (for instance, while the SJPPDS
methods outperformed cart in the Tarragona data as illustrated in Figure 11a, the opposite
holds true in the Census data as shown in Figure 10a). It is also important to clarify that the
generally high absolute values of the DR3 metric achieved by all methods are due to the fact
that the underlying CM3 metric tends to generate low values whenever the data is highly
correlated and the masking methods preserve well the correlation structure observed in
the original data (as pointed out in [10]). These figures also show, on the other hand, that
SJPPDS methods tended to systematically outperform the cart method in terms of the three
IL metrics.
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Figure 10: Metrics comparison for synthetic data methods in the Census data experiment.
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Figure 11: Metrics comparison for synthetic data methods in the Tarragona data experi-
ment.
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Figure 12: Metrics comparison for synthetic data methods in the simulated gaussian data
experiment.
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Figure 13: Metrics comparison for synthetic data methods in the simulated exponential
data experiment.

5 Computation time benchmarking experiments

We evaluated the computation time of the proposed SJPPDS approaches against all other
SDC methods evaluated in this paper. Each experiment was replicated 30 times, and the
user times computed by the system.time function of R base were recorded. All ex-
periments were performed on a Windows machine with processor Intel(R) Core(TM) i7-
7820HQ CPU 2.90GHz 2.90 GHz and 64 GB of RAM. See Appendix A1.6 for further details
about these experiments.

In the first experiment (Figure 14) we evaluated user time for datasets with number of
records increasing from 1,000 to 10,000 and with p = 12 variables. Panel a shows that the
full SJPPDS and microaggregation using projection pursuit principal components methods
were by far the most time expensive approaches. Panel b reports the results after removing
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Figure 14: Computation time benchmarking of all SDC methods.

these two methods, and shows that cart is the third most expensive approach. Finally, panel
c reports the results after removing the 3 most expensive approaches, and shows that the
simplified SJPPDS method was the forth most expensive one. Observe, however, that the
approach is still able to mask a dataset containing 10,000 records and 12 variables in under
1.5 seconds. As one would expect, the noise addition methods and d-shuffle are by far the
fastest ones.

Even though we made no efforts to optimize our code for speed (it is implemented in
R), overall, the simplified SJPPDS method showed competitive speed, being considerably
faster than cart, but still slower than the methods implemented in the sdcMicro R package
(which uses internal C++ implementations for computational efficiency). In fact, the most
time consuming step in our experiments was the computation of the disclosure/information
loss metrics, rather than the application of the masking methods.

These experiments also clearly illustrate that the simplified SJPPDS method should be the
default choice in practice, since its computation can be orders of magnitude faster than the
full version, and both approaches deliver comparable results in terms of masking perfor-
mance (as illustrated by the experiment’s results in the previous section).

To better understand the computational costs of the simplified SJPPDS approach we show
(see Appendix A2) that the time complexity of Algorithm 3 (SJPPDS) when the joint prob-
ability preserving data shuffling is performed using the simplified version described in
Algorithm 2 (JPPDS-s) is O(n(p2 + ncp)), where, as described before, n represents the sam-
ple size (number of rows), p represents the number of attributes (number of columns), and
nc represents the number of classes/labels (number of bins) parameter used in the dis-
cretization of the numeric microdata. This means that the computation time: (i) scales
quadratically with the number of columns of the dataset when the number of rows and
number of bins is fixed; (ii) scales linearly with the number of rows of the dataset when the
number of columns and bins are fixed; and (iii) scales linearly with increases in the number
of bins when the number of rows and columns are fixed.

To illustrate each of these points we performed 3 additional experiments. In the first, we
set nc to 100 and simulate datasets with n = 10, 000 records and number of variables (p)
increasing at first from 5 to 50 (Figure 15a) and then increasing from 50 to 500 (Figure 15b).
These two panels clearly show a quadratic increase in computation time as p increases. In
the second experiment, we set nc to 100 and simulate datasets with p = 10 variables and
sample sizes (n) increasing from 10,000 to 100,000 (Figure 15c), clearly illustrating the linear
increase in computation time. Finally, in the third experiment we simulate datasets with
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p = 10 variables and n = 10, 000 records and report the computation time for number of
bins (nc) increasing from 100 to 1,000, clearly illustrating that the computation time scales
linearly with nc.
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Figure 15: Compute time for the simplified JPPDS method.

6 Final remarks

We proposed a fully non-parametric and model free perturbative approach for SDC, that
does not require any model specification nor is influenced by variable order. The method
preserves the association structure of the data while generating marginal distributions that
are identical to the original data. It is straightforward to implement and computationally
light. In all experiments, it compared favorably against popular SDC approaches in terms
of the confidentiality/utility tradeoff.

Due to its non-parametric and model free nature, the proposed approach might prove to
be particularly effective in noisy and small datasets, which tend to be more challenging
for approaches based on data modeling (which usually require good quality data in order
to perform well). Quite importantly, such small/noisy datasets are likely the norm, rather
than the exception, in academic research settings in health and social sciences, where pre-
serving the confidentiality of the research subjects is key. (But, of course, the approach
might also be a good option for large/high quality datasets, as well.)

While in this paper we focused on numerical variables, the approach can be directly ap-
plied to ordinal variables with high numbers of levels (which can be essentially treated as
numerical variables). The approach might also be potentially extended to categorical vari-
ables with high numbers of levels, where it is possible to categorize the variables into a
smaller number of levels (similarly, to the approach referred to as “generalization”, “coars-
ening”, or “global recoding” in SDC), and then perform the restricted shuffles of the origi-
nal values within the levels of the coarser categorical versions of the variables.

Finally, an important limitation of the proposed approach is that it cannot be directly ex-
tended to categorical or ordinal variables with low numbers of levels, where it is not possi-
ble to further coarse the variables into fewer levels. Possible research directions to handle
this situation include hybrid approaches where SJPPDS is used to mask the continuous
variables and an alternative approach is used to mask the categorical ones.

R code implementing the sequential joint probability preserving data shuffling approach
is available at https://github.com/echaibub/SJPPDS.
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Appendix

A1 Experimental evaluation details

A1.1 Simulated datasets details

We performed 2 simulated data experiments. For the first, we generated data from a mul-
tivariate normal distribution, X ∼ Np(µ,Σ), with distinct mean vectors and structured
covariances matrices (with off-diagonal entries σij = ρ|i−j|, and diagonal entries σjj = 1).
For each dataset, the mean values µj , j = 1, . . . , p, and correlation parameter ρ were ran-
domly sampled from U(−3, 3) and U(−0.8, 0.8) distributions, respectively. For the second
simulated data experiment, we simulated correlated exponential random variables as fol-
lows. First, we simulate data from a multivariate normal random variable Z ∼ Np(0,Σ),
then, for j = 1, . . . , p, we compute the correlated uniform variables Uj = Φ(Zj), and the
correlated exponential random variables Xj = G−1

λ (Uj), where Φ and Gλ represent, re-
spectively, the cumulative distribution functions of standard normal and exponential (with
rate λ) random variables. For each dataset, we randomly sample λ and ρ from U(0.1, 10)
and U(−0.8, 0.8) distributions, respectively (and compute Σ as before). In each of the 2
experiments we generated 30 datasets, X , of dimension n = 500 by p = 10.

A1.2 Implementation of the d-shuffle approach

As described in reference [18], in situations where all variables in the data are confidential,
the data shuffling approach can still be applied as follows:

1. Estimate the Spearman correlation matrix, R, from the original data X (of dimension
n× p).

2. Compute the corresponding correlation matrix, ρ, from R, where

ρij = 2 sin
(π rij

6

)
,

and rij corresponds to the ijth entry of R.

3. Simulate the synthetic data set, Y ∗, from a multivariate normal distribution Np(0,ρ).

4. Obtain the reverse mapped data, Y , obtained by replacing y∗(i),j with x(i),j , for (i) =
1, . . . , n, j = 1, . . . , p, where x(i),j corresponds to the ith ordered observation of the
jth variable (i.e., rank(x(i),j) = i), and y∗(i),j is defined in a similar way.

A1.3 Disclosure risk metrics

In our evaluations of the data perturbation methods we adopt the following DR metrics:

1. The distance based record linkage (DBRL) metric [20, 8] is one of the most widely
used methods for quantifying re-identification disclosure risk in SDC. It is imple-
mented by first standardizing the variables in the data (to avoid scaling issues) [8],
and then computing the euclidean distances between each record in the masked
dataset against all records in the original dataset. A masked record is then classified
as “linked” when the nearest record in the original dataset turns out to be the corre-
sponding original record. The metric is then computed as the proportion of masked
records that turn out to be linked to original records.
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2. The rank interval distance (RID) metric [8] is a popular metric for measuring attribute
disclosure risk. It corresponds to the proportion of original records inside a rank inter-
val whose center is the corresponding masked record. The rank interval is computed
as follows. Each variable in the masked data is independently ranked and a rank in-
terval is defined around the value that the variable takes on each record, rij (where
rij represent the rank of the ith record for jth variable). The rank interval is defined
as [rij−n p, rij+n p], so that the ranks of values within the interval differ by less than
p percent of the total number of records, n. A record in the original dataset is consid-
ered to be inside the rank interval of masked record i if, for all variables j, it is inside
the respective rank interval. The interval distance is then computed as the proportion
of original records inside a rank interval. Following the recommendations in [8], we
report average RID values, obtained by averaging the RID for p varying from 1% to
10% (in 1% increments).

3. The standard deviation interval distance (SDID) metric [15] is another popular metric
for measuring attribute disclosure risk. It is computed exactly as the RID metric,
but with the exception that intervals are built around the raw values of the masked
variables (rather than around their ranks), and the interval width is computed in
terms of a percentage p of the standard deviation of the variable (rather than in terms
of a rank percentage).

For the synthetic data methods we adopted the DR3 metric, defined as,

DR3 = 1− CM3 ,

where the CM3 metric [10] is computed as follows:

• For j ∈ {1, 2, . . . , p}:

– Sort the original data set by its jth attribute and let Xs[,−j] be the projection of
the sorted data set on all attributes except the jth one.

– Sort the synthetic data set by its jth attribute and let X⋆
s[,−j] be the projection

of the sorted data set on all attributes except the jth one.

• Compute CM3 as,

CM3(X,X⋆) = min
1≤j≤p

{CM2(Xs[,−j],X⋆
s[,−j])} ,

where,

CM2(A,B) =

p∏
j=1

(1− ρ2j ) ,

and ρj , j = 1, . . . , p, represents the canonical correlation between the (ranks of) A and
B datasets.

Basically, the CM3 metric measures confidentiality as the minimum value of CM2 over all
possible sortings of the original and synthetic datasets with respect to a single attribute. As
pointed in [10] this strategy circumvents the need to know the mapping between records
in the original and synthetic datasets.
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A1.4 Information loss metrics

In our evaluations we adopt the following IL metrics:

1. Propensity score (PS) metric [26]. In the causal inference literature, the propensity
score is defined as the probability of being assigned to treatment group, given the val-
ues of covariates [22]. When two large groups have similar distributions of propen-
sity scores, the groups should have similar covariate distributions. In the context
of SDC, one can stack the original and masked datasets, adding a variable “treat-
ment”, set to 1 for masked records and to 0 for the original records, and then compute
propensity scores (i.e., the probability of being a masked record) for all records in the
stacked dataset. If the distribution of the propensity scores for the original records is
similar to the distribution of propensity scores of the masked records, this means that
the original data is similar to the masked data and the masking method has incurred
a small amount of information loss. Following [26] we estimate the propensity scores
using logistic regression using a second order polynomial on all variables and in-
cluding all two-by-two interactions. (The propensity scores are simply the predicted
probabilities of the logistic regression model.) The similarity of the propensity score
distributions is computed as,

PS =
1

2n

2n∑
i=1

(pi − 1/2)2 , (1)

where 2n is the total number of records in the stacked dataset and pi is the propensity
score for the ith record. Note that equation (1) will be maximal (assuming value 0.25)
when pi is either 1 or 0 for all i (in which case the original and masked datasets are
completely distinguishable), and will be minimum (assuming value 0) when pi = 0.5
for all i (in which case the datasets are completely undistinguishable). Because PS
is bounded in the interval [0, 0.25] we multiply its value by 4 in order to obtain an
information loss metric with range in the [0, 1] interval.

2. Probabilistic information loss (PIL) metric [16] quantifies information loss from a
probabilistically perspective based on the differences between statistics from the orig-
inal and perturbed datasets. For any population parameter θ and corresponding sam-
ple statistic θ̂ in the original data, X, the PIL approach computes the corresponding
sample statistic θ̂⋆ on the masked dataset X⋆, and measures information loss using
the standardized discrepancy statistic, Z = (θ̂⋆ − θ̂)/V ar[θ̂⋆]1/2. Under the assump-
tion that Z converges to a N(0, 1) distribution, the PIL approach quantifies the infor-
mation loss w.r.t. θ through the probability,

PIL(θ) = 2P
(
0 ≤ Z ≤ |θ̂⋆ − θ̂|/V ar[θ̂⋆]

1
2

)
, (2)

Note that PIL(θ) is 0 when there is no loss of information (i.e., θ̂⋆ = θ̂), and increases
towards 1 as the absolute discrepancy |θ̂⋆ − θ̂| increases. We are often interested in
evaluating information loss across many distinct population parameters and follow-
ing [16], we compute the average PIL across means, variances, covariances, correla-
tions, and sample quantiles.

3. The covariance-based bounded utility metric (UM) proposed by [10], captures the
similarity between the covariance matrices of the original and masked data, and is
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bounded between 0 and 1. It represents an improvement over the use of eigenvalues
to compare covariance matrices since it can capture both the magnitude and direction
of the spread of the data over orthogonal directions. (As pointed by [10], the compar-
ison of eigenvalues only captures the magnitude of the maximum spreads, and two
datasets can have the same eigenvalue while being different. For example, if X⋆ is
a simple rotation of X , both datasets will share the same eigenvalue.) Note that ref-
erence [10] defined this metric in terms of utility, rather than information loss, and
denote it by UM. Therefore, we subtract it from 1 to convert it to a IL metric,

CBIL = 1−UM .

The UM metric is computed as follows. Let CXX and CX⋆X⋆ represent, respectively,
the covariance matrices from X and X⋆, and {λX

j ,vX
j } and {λX⋆

j ,vX⋆

j }, j = 1, . . . , p,
represent the eigenvalues and eingenvectors from CXX and CX⋆X⋆ , respectively, so
that,

λX
j = (vX

j )TCXX(vX
j ) .

Now consider,
λ
X⋆|X
j = (vX

j )TCX⋆X⋆(vX
j ) .

The UM metric is then defined as,

UM(X,X⋆) =

 1, if λX
j = λ

X⋆|X
j = 1/p, j = 1, . . . , p;

1−min

(
1,

∑p
j=1(λ

X
j −λ

X⋆|X
j )2∑p

j=1(λ
X
j −1/p)2

)
, otherwise.

A1.5 Worse case sorted disclosure risk metrics

As described in the main text, all 3 DR metrics selected for our comparisons against data
perturbation methods were developed to evaluate masking methods for which there exists
a mapping between the original, xij , and masked values, x⋆

ij . While this mapping is (at
first sight) destroyed by the data shuffling process employed by the SJPPDS and d-shuffle
approaches, in practice, it is possible to find a mapping between the original and perturbed
data values using an analogous strategy as the one adopted by [10] for the computation of
the CM3 metric (which was developed to measure confidentiality of synthetic data meth-
ods, where no direct mapping between original and synthetic values is available). A full
description of the CM3 metric is provided in Section A1.3, but, basically, the procedure goes
as follows. First, an approximate mapping between the original and synthetic datasets is
obtained by sorting the rows of both the original and synthetic datasets according to the
values of a given attribute (column) of the data. Second, for each data sorting, the CM2
metric (described in Section A1.3) is then computed on the sorted datasets (after the re-
moval of the column used to sort the data). Third, the worse case (lowest) CM2 metric
value across all sortings is selected as the confidentiality metric.

This procedure for the computation of the CM3 metric is justified under the permuta-
tion paradigm for data anonymization proposed by [7]. According to the permutation
paradigm, the protection provided by an anonymization method results from two modi-
fications to the original data, X , namely: (i) changes in the ranks of attribute values via
a permutation of the original data into its reverse mapped version (obtained by reverse
mapping the original data with respect to the masked data); and (ii) potential addition of
noise to the reverse-mapped data (without altering the record’s ranks). Since the second
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step does not change ranks, the primary principle of confidentiality protection is the per-
mutation. This means that any masked variable can always be viewed as a permutation of
the variable’s original values (plus perhaps a small amount of noise). Hence, as discussed
in Section 3 of reference [10], even if the masked values are not directly related to the orig-
inal values such as, for example, in synthetic datasets, a permutation linking the synthetic
and original values always exists. Therefore, the permutation model tells us that replacing
original by synthetic data can still be viewed as a permutation, and a possible approach
for an intruder to find a hypothesized mapping between the original and synthetic data
is to sort both the original and synthetic data by their jth attribute and, for any arbitrary
jth attribute, hypothesize that the ith sorted original record corresponds to the ith sorted
synthetic record.

Clearly, a similar argument can be made for the masked datasets generated by the SJP-
PDS and d-shuffle methods (for which the marginal distributions of perturbed datasets
are identical to the marginal distributions of the original data and we can find an exact
mapping between the sorted attribute j in the original data and sorted attribute j in the
synthetic data for any j). Hence, a sensible way to find the mapping between the masked
and original data values to compute the DBRL, RID and SDID metrics is to: (i) simply
sort the original and masked datasets according to the value of one of their attributes; (ii)
compute the selected metric on the sorted data; and (iii) adopt the maximum metric value
obtained across all variable’s sortings as the DR measure (i.e., select the worse case sce-
nario), as described in Algorithm 4. Observe, as well, that this procedure generates more
conservative DR metrics (i.e., larger disclosure risks) for the SJPPDS and d-shuffle meth-
ods than the direct calculation of the metrics in the unsorted data. Figures A2, A3, and A4
show the values of the DBRL, RID and SDID metrics computed using Algorithm 4 against
the respective values obtained using the naive approach of directly computing the metrics
without first sorting the data values.

In our evaluations we use the more conservative approach in Algorithm 4 for the evalua-
tion of the SJPPDS and d-shuffle methods, but the “naive” approach for the evaluation of
the microaggregation, noise addition, and rank swapping approaches.

Algorithm 4: Worse case sorted version of metric M . (M can represent any of the
DBRL, RID, and SDID metrics.)
Data: Original microdata, X ; masked microdata, X⋆

1 for j in 1, . . . , p do
2 Find the order of variable j in the original dataset, i.e., oj ← Order(X[, j]), and

sort the records of the original data (across all variables) according to oj , i.e.,
Xs ←X[oj , ]

3 Find the order of variable j in the masked dataset, i.e., o⋆j ← Order(X⋆[, j]), and
sort the records of the masked dataset (across all variables) according to o⋆j , i.e.,
X⋆

s ←X⋆[o⋆j , ]

4 Compute the metric using the sorted datasets Xs and X⋆
s , i.e.,

Ms
j ←Metric(Xs,X

⋆
s)

5 Select the maximum of the Ms
j metrics, i.e., M̃s ← max1≤j≤p{Ms

j }
Result: Return the worse case sorted metric, M̃s
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A1.6 Computation time benchmarking experiment details

In all computation time benchmarking experiments, we simulated data from a p dimen-
sional multivariate normal distribution with mean vector µ = 0 and covariance matrix, Σ,
with off-diagonal entries σij = (−0.75)|i−j| and diagonal entries σjj = 1. The tuning pa-
rameters were set to the following values: 100 for the SJPPDS methods; 7 for the microag-
gregation methods; 100% for the noise addition approaches; 15% for the rank-swapping
method; and the original variable order for the cart approach.

A2 Time complexity of the SJPPDS algorithm

Here we describe the computation complexity of the SJPPDS algorithm (Algorithm 3) based
on the simplified version of the joint probability preserving data shuffling algorithm (Al-
gorithm 2).

Starting with Algorithm 2, note that steps 1, 2, 3, 4, 6, 10 and 11 have complexity O(1). Step
5 has complexity O(n) since the Unique operation has linear complexity (and is applied to a
vector of length n). The number of iterations of the for-loop in Step 7 is nc (since the number
of unique values in the last column of C will be equal to the number of classes/levels
used in the discretization). Hence, the complexity of all steps involved in the for-loop is
O(nnc). (Since: step 8 has complexity O(n); step 9 has complexity lower than O(n), as idx
has less than n elements and the Shuffle operation has linear complexity; and step 10 has
complexity O(1).) Hence, the total complexity of Algorithm 2 is O(nnc).

Now, moving to Algorithm 3, note that steps 1, 5, and 8 have complexity O(1). Steps 2
and 6 have complexity O(np) (since the discretization operation is linear on the number
of samples n and we discretize the p columns of the data). Steps 3 and 7 correspond to
applications of Algorithm 2 and have complexity O(nnc). Since the discretization and joint
probability preserving operations are repeated p times, we have that the total complexity
of Algorithm 3 is O(p(np+ nnc)) = O(n(p2 + ncp)).

A3 Additional tables and figures

method Census Tarragona Gaussian Exponential
full-sjppds 1.207322e-07 1.222306e-06 0.0004247213 1.911232e-06
simple-sjppds 1.140327e-07 1.880262e-06 0.0004096321 1.844499e-06
micro-mdav 1.223804e-03 5.894210e-03 0.1116734341 4.381303e-04
micro-pca 3.704366e-02 1.105832e-02 0.6088211884 6.671785e-03
micro-pppca 2.107202e-02 4.005678e-03 0.4223046141 5.660168e-02
noise-a 2.994296e-03 5.979386e-03 0.2627058322 3.222883e-03
noise-c 6.011815e-05 6.690388e-06 0.0062790947 3.595233e-04
rankswap-p 3.658983e-03 6.859038e-03 0.1882761978 1.531572e-03
d-shuffle 1.535186e-05 2.912124e-02 0.0043017796 6.068384e-05

Table A1: Median CBIL values for all methods across all datasets.
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Figure A1: Comparison of the d-shuffle and SJPPDS approaches on toy artificial datasets
showing strong monotonic (panels a to f) and non-monotonic (panels g to l) associations.
Panel a shows a scatterplot of the original data with strong monotonic association between
X1 and X2. Panel b presents the corresponding correlation matrix. Panel c shows the
perturbed dataset generated by the d-shuffle method, while panels d, e, and f show the
perturbed datasets generated by the SJPPDS method based on number of categories/levels
(nc) set to 10, 20, and 30, respectively. The d-shuffle method worked reasonably well in
this example. Panel g presents a second example where the original data shows a strong
non-monotonic association between X1 and X2, but where the correlation between these
variables is nearly zero (panel h). In this case, the d-shuffle approach (panel i) is unable
to preserve the non-monotonic association observed in the original data, since it relies on
the estimated correlation matrix. The SJPPDS method, on the other hand, is still able to
preserve this non-monotonic association, as it approximates the joint probability distribu-
tion of the original data. The data in panel a was generated by drawing 1000 i.i.d. samples
according to ϵ1 ∼ U(0, 10), ϵ2 ∼ U(−1, 1), X1 = ϵ1, and X2 = log(X1) + ϵ2, while data
of panel g was generated by drawing from ϵ1 ∼ U(−10, 10), ϵ2 ∼ U(−1, 1), X1 = ϵ1, and
X2 = cos(X1) + ϵ2.
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Figure A2: Comparison of disclosure metrics computed using the worse case sorted ap-
proach described in Algorithm 4 versus the naive approach of directly computing the DR
metrics on the unsorted X and X⋆ datasets. Results from the full version of the SJPPDS
approach.
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Figure A3: Comparison of disclosure metrics computed using the worse case sorted ap-
proach described in Algorithm 4 versus the naive approach of directly computing the DR
metrics on the unsorted X and X⋆ datasets. Results from the simplified version of the
SJPPDS approach.
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Figure A4: Comparison of disclosure metrics computed using the worse case sorted ap-
proach described in Algorithm 4 versus the naive approach of directly computing the DR
metrics on the unsorted X and X⋆ datasets. Results from the d-shuffle approach.
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Figure A5: Selection of best tuning/perturbation parameter values conditional on differ-
ent DBRL thresholds. Panels a, b, and c report the tradeoff between information loss and
disclosure risk across a grid of tuning/perturbation parameter values (which in this exam-
ple corresponds to the percentage of additive noise). In all panels, the blue curve repre-
sents the average information loss score (equation 5), the red curve represents the average
disclosure risk score (equation 6), the black curve represents the overall score (equation
4), and the grey curve represents the DBRL metric. The grey horizontal line shows the
selected DBRL threshold, while the grey vertical line shows the selected best parameter
value. Panel a shows the results for DBRL threshold of 1. In this case the minimal overall
score (intersection of the black curve and vertical grey line) is obtained at a perturbation
parameter equal to 9% of noise. Note, however, that the corresponding DBRL value (inter-
section of the grey curve and grey vertical line) is close to 1 (what is unacceptably high in
practice). Panel b shows the results for DBRL threshold of 0.2. In this case, we only allow
tuning/perturbation parameter values for which the DBRL metric is lower than 0.2 (which
is achieved at a tuning parameter value of 69% of noise). Under this restriction we have
that the lowest overall score (black curve) is also achieved at 69% of noise. Panel c shows
analogous results for DBRL threshold of 0.1, in which case the best tradeoff is achieved at
93% of noise.
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Figure A6: Tradeoff between information loss and disclosure risk in the Tarragona dataset.
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