20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2025

Volume 18 Issue 2
Volume 18 Issue 1

Year 2024

Volume 17 Issue 3
Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 18 Issue 1


Hash the Universe: Differentially Private Text Extraction with Feature Hashing

Sam Fletcher(a),(*), Adam Roegiest(b), Alexander K. Hudek(b)

Transactions on Data Privacy 18:1 (2025) 1 - 27

Abstract, PDF

(a) Litera, Toronto, Canada.

(b) Zuva, Toronto, Canada.

e-mail:sam.fletcher @litera.com; sam.pt.fletcher @gmail.com; ;


Abstract

Using artificial intelligence for text extraction can often require handling privacy-sensitive text. To avoid revealing confidential information, data owners and practitioners can use differential privacy, a definition of privacy with provable guarantees. In this work, we show how differential privacy can be applied to feature hashing. Feature hashing is a common technique for handling out-of-dictionary vocabulary, and for creating a lookup table to find feature weights in constant time. One of the special qualities of feature hashing is that all possible features are mapped to a discrete, finite output space. Our proposed technique takes advantage of this fact, and makes hashed feature sets Rényi-differentially private.

The technique enables data owners to privatize any model that stores the data-dependent weights in a hash table, and provides protection against inference attacks on the model output, as well as against linkage attacks directly on the model's hashed features and weights. As a case study, we show how we have implemented our technique in commercial software that enables users to train text sequence classifiers on their own documents, and share the classifiers with other users without leaking training data. Results show that even common words can be protected with (0.06, 10-5)-differential privacy, with only a 1% average reduction in Recall and no change in Precision.

* Corresponding author.


ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 13 : 30 December 03 2024.