20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2025

Volume 18 Issue 2
Volume 18 Issue 1

Year 2024

Volume 17 Issue 3
Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 18 Issue 2


Using the Lehmer Mean to Assess Business Data Protection: Statistical Disclosure Control and the Truncated Moment Problem

Mark Stander(a),(*), Julian Stander(b)

Transactions on Data Privacy 18:2 (2025) 95 - 112

Abstract, PDF

(a) AECOM, United Kingdom.

(b) Centre for Mathematical Sciences, University of Plymouth, United Kingdom.

e-mail:mark.stander @gmail.com;


Abstract

Confidential business data needs protection against disclosure. Often this data is protected by releasing sample means, variances and higher power moments. Motivated by statistical disclosure control obligations and the need to publish business data safely, we explain how calculating the Lehmer mean from released power moments can lead to the unwanted disclosure of the largest data value. We explain how similar disclosure can apply to smaller data values and provide an approximate solution to the Truncated Moment Problem. We briefly discuss the Gini mean and the relationship between sample central and raw moments.

* Corresponding author.


ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 15 : 36 December 03 2024.