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Abstract. Several official statistics agencies release synthetic data as public use microdata files. In
practice, synthetic data do not admit accurate results for every analysis. Thus, it is beneficial for
agencies to provide users with feedback on the quality of their analyses of the synthetic data. One
approach is to couple synthetic data with a verification server that provides users with measures of
the similarity of estimates computed with the synthetic and underlying confidential data. However,
such measures leak information about the confidential records, so that agencies may wish to apply
disclosure control methods to the released verification measures. We present a verification measure
that satisfies differential privacy and can be used when the underlying confidential data are collected
with a complex survey design. We illustrate the verification measure using repeated sampling simu-
lations where the confidential data are sampled with a probability proportional to size design, and the
analyst estimates a population total or mean with the synthetic data. The simulations suggest that the
verification measures can provide useful information about the quality of synthetic data inferences.
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1 Introduction

Survey sampling is widely used in various fields to make inferences about finite popu-
lation quantities like population totals and averages. Typically, survey data are collected
using complex sampling designs, such as stratified, probability proportional to size, or clus-
ter sampling. These designs create unequal probabilities that individuals will be selected
into the sample. Data analysts need to adjust for the unequal selection probabilities to ob-
tain unbiased estimates of population quantities, for example, by using survey-weighted
estimators.

Many survey data sets are collected under pledges to protect the confidentiality of data
subjects’ identities and sensitive information. As such, agencies seeking to disseminate
survey data to the public typically apply some redaction strategies to reduce the risks of
unintended disclosures. One approach is to generate synthetic data (Rubin, 1993; Little,
1993; Reiter, 2003; Drechsler, 2011; Raghunathan, 2021; Reiter, 2023), an approach taken for
example, by the U.S. Bureau of the Census to share data from the Survey of Income and
Program Participation. In this approach, the agency simulates new values of confidential
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information using models estimated from the confidential data. These data are released as
public use files, available for secondary data analysis.

Naturally, the quality of inferences from synthetic data depend critically on the quality
of the models used to generate the synthetic data (Reiter, 2005). When the synthetic data
models fail to accurately capture the distribution of the confidential data, secondary ana-
lysts of the synthetic data can obtain unreliable results. Thus, it is beneficial for agencies
to provide means for secondary analysts to get feedback on the quality of their analyses of
the synthetic data (Reiter and Drechsler, 2010).

To do so, one approach is to provide secondary analysts access to a verification server (Re-
iter et al., 2009; McClure and Reiter, 2012; Barrientos et al., 2018b). This is a computer system
that has both the confidential and synthetic data. The secondary analyst submits a query
to the server for a measure of the similarity of estimates based on the confidential and syn-
thetic data, for example, how far apart are the point estimates computed with the synthetic
and confidential data. The server reports back the verification measure to the analyst, who
can decide if the synthetic data results are of adequate quality for their purposes.

Verification measures leak information about the confidential data. For example, Reiter
et al. (2009) and McClure and Reiter (2012) illustrate how attackers could learn confidential
information from targeted queries for verifications of results from synthetic data. Thus, it
can be beneficial to apply disclosure treatment to verification measures before release. In
particular, several researchers (e.g., Amitai and Reiter, 2018; Yu and Reiter, 2018; Barrientos
et al., 2018b) have developed verification measures that satisfy differential privacy (Dwork
et al., 2006; Dwork, 2006). To date, however, researchers have not developed verification
measures that satisfy differential privacy for survey-weighted analyses.

In this article, we propose such measures. The basic idea is to leverage the sub-sample and
aggregate algorithm from the differential privacy literature (Nissim et al., 2007). We split the
confidential data into disjoint subsets, estimate a survey-weighted analysis in each subset,
determine the fraction of these estimates falling within an analyst-specified distance of the
synthetic data estimate, and add noise to this fraction using a Laplace Mechanism (Dwork
et al., 2006). We investigate the performance of this approach using simulations of proba-
bility proportional to size sampling and a survey-weighted estimate of a population total
or mean. We consider settings where the synthetic data are representative of the popula-
tion distribution and where they are not. The simulation results suggest that the methods
can provide useful feedback on the quality of synthetic data estimates of population totals
when the underlying confidential data are from a complex sample design.

The remainder of this article is organized as follows. In Section 2, we review survey-
weighted estimates and differential privacy. In Section 3, we describe our strategy for veri-
fication based on the sub-sample and aggregate algorithm. We also discuss the settings of
key parameters that affect the properties of the verification measures. In Section 4, we use
simulation experiments to illustrate the performance of the verification measures. Finally,
in Section 5, we briefly summarize the main findings.

2 Review of Survey-Weighted Estimation and Differential
Privacy

In this section, we provide background useful for understanding the verification measures
presented in Section 3.
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2.1 Survey-weighted Estimation

Let P be a finite population with N elements, each with an index i = 1, . . . , N . Let X =
(x1, . . . , xN ) be the population values of some variable. To motivate the methodology, we
suppose that the analyst seeks inferences for the population total, τ =

∑N
i=1 xi. We extend

to estimation of population means in Section 4.3. Let D be a subset of P comprising n
elements randomly drawn from P . We define the indicator Ii = 1 if element i is in the
sample D, and Ii = 0 otherwise. The vector I = (I1, . . . , IN ) represents the elements in D,
and n =

∑N
i=1 Ii is the sample size.

To determine I and hence D, in this article we consider probability proportional to size
(PPS) sampling as an illustrative complex sampling design. Let Z = (z1, . . . , zN ) be a
numerical variable known for all N units in P . We sample elements in P with unequal
probabilities proportional to Z. For each unit i = 1, . . . , N , let πi = Pr(Ii = 1) be its first-
order inclusion probability. In PPS sampling of n units, we have πi = nzi/

∑N
i=1 zi. For

any record i where this quantity exceeds 1, we set that record’s πi = 1. For the remaining
records, we recompute the πi based on the sum of the zi in P excluding the cases sampled
with certainty.

For any probability sampling design including PPS sampling, a common approach to es-
timate τ is the Horvitz and Thompson (1952) estimator. We weight each sampled element
by the inverse of its inclusion probability, and sum over all units in D. More precisely, for
i = 1, . . . , N , let wi = 1/πi. We estimate τ using

τ̂ =
∑
i∈D

xi/πi =
∑
i∈D

wixi. (1)

The estimator in (1) is unbiased for τ for any sampling design, provided πi > 0 for i =
1, . . . , N .

2.2 Differential Privacy

Let A be an algorithm that takes a data set D as input. We denote the output of A as
A(D) = o. We then define a neighboring data set D∗, which has the same data size as D. D
and D∗ differ in one row with all other rows identical. In accordance with the description
provided by Barrientos et al. (2018b), we present the definition of ϵ-DP as follows.

Definition 1 (ϵ-differential privacy): An algorithm A satisfies ϵ-differential privacy,
abbreviated ϵ-DP, if for any neighboring data sets D and D∗, and any output o ∈
Range(A), the

Pr(A(D) = o) ≤ exp(ϵ)Pr(A(D∗) = o). (2)

The ϵ is known as the privacy budget. It quantifies the similarity between the outputs of A
being implemented over D and D∗. Intuitively, smaller ϵ makes it more difficult for users
to distinguish the data record that differs between D and D∗, and thus guarantees a higher
privacy level.

DP has three important properties. Suppose that A1 and A2 are algorithms that satisfy
ϵ1-DP and ϵ2-DP, respectively. First, for any data set D, releasing the outputs A1(D) and
A2(D) satisfies (ϵ1 + ϵ2)-DP. This is called the sequential composition property. Second,
for any two data sets D and E measured on disjoint sets of individuals, releasing the out-
puts of A1(D) and A2(E) guarantees max(ϵ1, ϵ2)-DP. This is called the parallel composition
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property. Third, for any algorithm A3 that does not depend on D, releasing the output
A3(A1(D)) satisfies ϵ1-DP. This is called the post-processing property.

One approach to achieve ϵ-DP is the Laplace Mechanism (Dwork et al., 2006). Let f be
a function on D → Rd; for example, f could sum the elements of one column (i.e., one
variable) of D. The global sensitivity is defined as ∆(f) = max(D,D∗)∥f(D)−f(D∗)∥1 over
all neighboring data sets D and D∗. The Laplace Mechanism perturbs f(D) by adding noise
drawn from a Laplace distribution, i.e., we compute f(D)+η, where η ∼ Laplace(0, ∆(f)/ϵ).

For some f , ∆(f) can be large, resulting in a high probability of adding large noise to f(D).
In such cases, we may want to satisfy ϵ-DP using an algorithm other than the Laplace Mech-
anism. One such mechanism, proposed by Nissim et al. (2007), is the sub-sample and ag-
gregate algorithm. The basic idea is to randomly partition D into M disjoint subsets, D′ =

{D1, . . . , DM}. For each Dk, we determine f(Dk) and then favg(D
′) =

∑M
k=1 f(Dk)/M . For

many f , including our verification measures, changing D by only one record changes the
value of at most one f(Dk). Thus, ∆(favg) = ∆(f)/M . We can apply a Laplace Mechanism
to this favg(D

′) using ηnew ∼ Laplace(0,∆(f)/ϵM). Thus, we have reduced the variance
of the noise significantly. We use the sub-sample and aggregate method to develop the
differentially private, survey-weighted verification measures, as we now describe.

3 Differentially Private, Survey-weighted Verification

Suppose D is a confidential data set comprising i = 1, . . . , n individuals measured on p
variables. Thus, for any individual i, we have Di = (xi1, . . . , xip). We also have a survey
weight, wi = 1/πi, where πi is the first-order inclusion probability of individual i. As a
public use file, the agency generates a synthetic data set D0 comprising n0 simulated in-
dividuals with values of the same p variables in D. We assume that the agency generates
D0 following the approach in Raghunathan et al. (2003), in which it (i) simulates values for
the N − n records not in D to create a completed population P ′ and then (ii) takes a simple
random sample of size n0 from P ′ that is released as D0. Thus, all j = 1, . . . , n0 synthetic
individuals in D0 have the simple random sample weights N/n0. The agency also might
replace values for the records in D when making P ′; this does not affect our methodology.
For simplicity, we also assume that the agency releases only one synthetic data set, which
is the case, for example, for the synthetic Longitudinal Business Database; see Kinney et al.
(2011) and Kinney et al. (2014). Our verification measures also can be applied when multi-
ple implicates are released. We simply use the estimates from the synthetic data combining
rules (Raghunathan et al., 2003) instead of the estimates from the one D0.
Suppose that the synthetic data analyst intends to estimate the population total of one

of the variables, say X , based on D0. For example, xi could be an indicator of whether
individual i speaks a certain language, so that τ =

∑N
i=1 xi is the total number of peo-

ple who speak that language in the population. Let τ̂0 = Nx̄0 = N
∑

j∈D0
xj/n0 be the

synthetic data analyst’s estimate of τ computed from D0. Let the synthetic data analyst’s
estimated variance of τ̂0 computed with D0 be σ̂2(τ̂0) = N2((1 − n0)/N)s20/n0, where
s20 =

∑
j∈D0

(xj − x̄0)
2/(n0 − 1).

3.1 Description of the Algorithm

To construct verification measures, we extend the approach introduced by Barrientos et al.
(2018b) and Yang and Reiter (2024) to survey-weighted estimates. Let τ̂ be a survey-
weighted estimate of τ computed with the confidential data D. The synthetic data analyst
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cannot compute τ̂ , since they do not have access to D. However, we define it to motivate
the verification algorithm. Let d̂ = |τ̂0 − τ̂ | be the absolute difference between τ̂0 and τ̂ .
When d̂ is small, where small is defined by the synthetic data analyst, it suggests that τ̂0 is
sufficiently accurate for the analyst’s purposes. We operationalize this by using a tolerance
interval centered around τ̂0, which we refer as T (τ̂0, α). Here, α is a parameter that deter-
mines the width of the tolerance interval. To illustrate, suppose the synthetic data analyst
views D0 of adequate quality for their purposes if τ̂0 is within three synthetic-data standard
deviations of τ̂ . This analyst can set T = [τ̂0 − 3σ̂(τ̂0), τ̂0 + 3σ̂(τ̂0)]. As another example,
the analyst may decide that τ̂0 is accurate enough as long as τ̂ is within some percentage
of τ̂0. This analyst can set T (τ̂0, α) = [τ̂0 ± α|τ̂0|]. The analyst then seeks to know whether
τ̂ ∈ T (τ̂0, α).

To satisfy ϵ-DP, however, the agency cannot directly release an indicator of whether τ̂ ∈
T (τ̂0, α). The agency should not use a Laplace Mechanism to perturb this indicator, as its
global sensitivity equals one, making the Laplace distribution too high variance to return
useful information. Further, generally it is not feasible to release a version of τ̂ that satisfies
ϵ-DP. As noted in Reiter (2019) and Drechsler (2023), to date there do not exist differentially
private algorithms for releasing τ̂ from complex surveys that have low errors for reasonable
privacy guarantees.

Instead, we use the sub-sample and aggregate method. The verification server randomly
partitions the confidential D into M disjoint subsets, with each partition denoted Dk ∈
{D1, . . . , DM}. The sample size of each Dk is nk = ⌊n/M⌋. When n is not divisible by M ,
some partitions have one more or one less unit than others. In each Dk, the server computes
a survey-weighted population estimate of τ using only the data in Dk. To do so, the server
inflates each wi by a multiplicative factor of n/nk. In particular, for k = 1, . . . ,M , the server
computes

τ̂k =
∑
i∈Dk

wi(n/nk)xi. (3)

In each Dk, the synthetic data analyst specifies a tolerance interval C(τ̂0, α, γ). This in-
terval is not necessarily the same as T (τ̂0, α). We discuss ways of setting C(τ̂0, α, γ) in
Section 3.3. For k = 1, . . . ,M , let Ak = 1 when τ̂k ∈ C(τ̂0, α, γ), and Ak = 0 otherwise.
Let S =

∑M
k=1 Ak be the number of partitions where Ak = 1. Then, S/M is an estimate of

the probability that, for an arbitrary Dk, the τ̂k ∈ C(τ̂0, α, γ). Values of S/M near 1 indi-
cate that the confidential-data estimates in the partitions frequently fall inside the tolerance
intervals, which suggests that the estimates from the confidential data are similar to the
estimate from the synthetic data. Values of S/M near 0 indicate that estimates from confi-
dential data are dissimilar to the estimate from the synthetic data, suggesting the synthetic
data estimate is not sufficiently accurate for the analyst’s purposes.

To meet the ϵ-DP requirement, the verification server needs to add noise to S. We do so
via the Laplace Mechanism. The server randomly draws a sample η ∼ Laplace(0, 1/ϵ) and
sets SR = S + η. This Laplace Mechanism presumes a ∆(f) = 1, that is, changing one
record in D only affects at most one Ak. At the end of this section, we discuss the privacy
properties of SR in more detail.

Because SR/M can be outside [0, 1], we apply post-processing to enhance the interpretabil-
ity of the reported verification measure. Specifically, we assume that each Ak ∼ Bernoulli(r),
where r is the probability that any randomly generated τ̂k ∈ C(τ̂0, α, γ). Hence, we assume
that S|r ∼ Binomial(M, r). We suppose a uniform prior distribution for r, which equiv-
alently is r ∼ Beta(1, 1) where Beta represents a Beta distribution. Thus, the model for
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post-processing SR is

SR|S ∼ Laplace(S, 1/ϵ) S|r ∼ Binomial(M, r) r ∼ Beta(1, 1). (4)

We obtain the posterior distribution p(r|SR) via a Gibbs sampler. The sampler does not
use the true value of S, which is unavailable to the algorithm to maintain ϵ-DP. Rather, we
average over plausible values of S. The full conditional for r is

p(r|S, SR) ∝ Pr(S|r)Pr(r) ∝ rS(1− r)M−S (5)

which is the kernel of a Beta(S + 1, M − S + 1) distribution. The full conditional for S is

Pr(S|r, SR) ∝ Pr(SR|S)Pr(S|r) ∝ e−
|SR−S|

1/ϵ
1

Γ(S + 1)Γ(M − S + 1)
rS(1− r)M−S . (6)

The verification server releases draws from p(r|SR), including the posterior median.
When p(r|SR) is concentrated near 1, the analyst can conclude that the synthetic and con-

fidential data offer similar estimates of τ . When p(r|SR) is concentrated near 0, the analyst
can conclude that the synthetic and confidential data estimates of τ are too dissimilar for
τ̂0 to be considered sufficiently accurate. Values of r near 0.5 suggest that the evidence is
unclear.

3.2 Privacy Protection

In this section we discuss the privacy protection properties of these verification measures.
First, because of the post-processing property of ϵ-DP mentioned in Section 2, releasing
p(r|SR) does not affect the privacy guarantee endowed by generating SR. The Bayesian
modeling only uses SR; it never uses other results from the confidential data. Second,
presuming ∆(f) = 1 for the verification measures implicitly presumes that changing one
individual in D does not change the data, including the survey weights, for any other
individuals in D. This could be violated, for example, when the agency adjusts survey
weights for nonresponse or does data editing by using information from multiple records
(Drechsler and Bailie, 2024). We leave accounting for this possibility to future research.
Third, we note that D0 may not satisfy ϵ-DP; indeed, most implementations of synthetic
data to date do not. As a result, we cannot rely on the sequential composition property of
ϵ-DP to quantify the privacy loss from releasing both SR (or p(r|SR)) and D0. Of course,
if D0 (or more precisely τ̂0) is differentially private (as in, e.g., Bowen and Liu, 2020; Liu,
2022), then the sequential composition property applies. Thus, agencies and analysts can
interpret the privacy protection afforded by the verification measures as a bound on the
additional privacy leakage due to releasing the verification measure over the leakage from
releasing D0 itself.

Even without the benefit of sequential composition, using a differentially private verifi-
cation measure has some potentially appealing features. To illustrate, consider instead an
agency that releases d = τ̂0 − τ̂ exactly, i.e., with no privacy protection, as a verification
measure. In this case, an adversary could learn τ̂ by subtraction. Suppose the adversary
can construct a set of estimates that, in combination, can be used to isolate some targeted
individual Di ∈ D. For example, the adversary may request verifications where τ̂ is the
survey-weighted, estimated total of some sensitive variable, say X1, for two sets of individ-
uals, one comprising all records in D and the other all records in D −Di. Using these two
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data sets, the adversary also could ask for verifications where τ̂ is the survey-weighted esti-
mate of the population size. The adversary can learn wixi1 from the first set of verifications
and wi from the second set of verifications, which then reveals the sensitive xi1.

The situation is improved when the verification measure is the indicator for τ̂ ∈ T (τ̂0, α).
Now, the adversary only can learn bounds on wi and xi1. For example, suppose τ̂ = 1
for all four verification queries described previously. Using trial and error, the adversary
may be able to identify a set of possible values of the target’s wi that results in a τ̂ inside
the tolerance interval for the population size. Similarly, for any feasible wi identified, the
adversary may be able to identify values of xi1 that result in a τ̂ inside the tolerance interval
for the total of X1, thereby creating a plausible range for xi1 over all feasible wi. Whether
this plausible range for xi1 is sufficiently wide to provide adequate protection is, of course,
specific to the values in D and Di. Generally, it is difficult for agencies to identify all such
potential attacks before putting a verification server online, as well as to keep track of all
possible sets of verification queries that might lead to isolating targeted individuals.

As with any interactive system, each time the agency releases a verification result, it leaks
information about the underlying confidential data. Differentially private measures like
those presented here offer a way for agencies to quantify the cumulative information leak-
age, which facilitates agency assessments of the trade offs in disclosure risk and data useful-
ness inherent from releasing verifications. Verification measures that do not satisfy formal
privacy generally do not come with quantifiable metrics for agencies to assess the trade
off. To be sure, non-formally-private verification measures may offer adequate protection;
however, agencies applying them have to rely on intuition as opposed to mathematics to
characterize the privacy protection.

Of course, using differentially private verification measures does not eliminate disclosure
risks. The algorithm at best provides a way to bound the additional information leakage
in the verification measures, along with a quantifiable metric for that information leakage.
We discuss the issue of cumulative privacy loss further in Section 5.

3.3 Specifying the Tolerance Interval

The synthetic data analyst needs to specify C(τ̂0, α, γ). Here, γ plays the role of an infla-
tion factor that may be used to go from T (τ̂0, α), which is based on a sample size of n,
to C(τ̂0, α, γ), which is based on a sample size of approximately n/M . Following Yang
and Reiter (2024), we consider two classes of tolerance intervals. First, the analyst may set
C(τ̂0, α, γ) = T (τ̂0, α); we call this a fixed tolerance interval. To illustrate, suppose τ̂0 =
100000 and σ̂(τ̂0) = 1000. The analyst wants to know if τ̂ falls within 10% of τ̂0, i.e., within
10000. For a fixed tolerance interval, we have T (τ̂0, α) = C(τ̂0, α, γ) = [90000, 110000].

Alternatively, the analyst may set C(τ̂0, α, γ) ̸= T (τ̂0, α); we call this an adjusted tolerance
interval. The main motivation for adjusted tolerance intervals is that the smaller sample
size in any Dk increases the variance associated with τ̂k compared to the variance of τ̂ from
D. If we use a fixed tolerance interval with C(τ̂0, α, γ) = T (τ̂0, α), any τ̂k has increased
probability of falling outside C(τ̂0, α, γ) even when τ̂ ∈ T (τ̂0, α). Thus, we use the param-
eter γ to inflate the tolerance intervals within the partitions.

To do so, we follow the strategy used by Barrientos et al. (2018a), which we explain using
an illustrative example. Suppose the analyst has in mind T (τ̂0, α) = [τ̂0 ± 3σ̂(τ̂0)]. Here,
we set α = 3, although analysts could choose other values, e.g., α = 10 for a tolerance of
±10000 when σ̂(τ̂0) = 1000. Suppose we have M = 25 disjoint partitions, (D1, . . . , D25). In
this case, it can be reasonable to approximate σ̂(τ̂k) with

√
n/nkσ̂(τ̂), that is, we inflate the

variance to recognize the change in sample size going from D to Dk. We use the inflated
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standard error when constructing the adjusted tolerance interval, so that C(τ̂0, α, γ) = [τ̂0±
(5)3 · σ̂(τ̂0)]. Here, γ =

√
25 = 5. As a default, we recommend setting γ =

√
M for adjusted

intervals. We note that γ = 1 in the fixed tolerance intervals.

3.4 Choosing M

In this section, we discuss the choice of the number of partitions M . We consider the effect
of changing M on S/M itself and on the noise from the Laplace Mechanism. This discussion
closely follows that in Yang and Reiter (2024).

By design, S and hence S/M can be one of M + 1 values. For instance, when M = 5,
we have S/M ∈ {0, 0.2, 0.4, . . . , 1}. In this case, S/M might not be granular enough for
the analyst to make clear interpretations of the quality of D0. In addition, with a small M ,
the perturbation from the Laplace Mechanism will have a greater proportional impact on S,
potentially making it more difficult to interpret SR. On the other hand, for a given D, fewer
partitions means larger sample sizes in each Dk. Larger values of nk reduce the variance of
τ̂k in each partition, which can result in more reliable inferences about the differences in τ̂
and τ̂0. Finally, a small M can increase the variance of S/M over the random partitions.

Analysts need to balance these trade offs in selecting M . Overall, the goal is to choose
an M so that the verification results are consistent with the results that could be obtained
using the full confidential data. In other words, we want Pr(τ̂ ∈ T (τ̂0, α)) to be close to
Pr(τ̂k ∈ C(τ̂0, α, γ)). Specifically, if τ̂ ∈ T (τ̂0, α), the probability density of SR/M should
have most mass near 1. When τ̂ is outside T (τ̂0, α), the probability density of SR/M should
have most mass near 0. In Section 4, we present simulation studies with different M to help
inform this decision.

4 Simulation Studies

In this section, we conduct simulation studies to illustrate the properties of the verification
measures. We first generate a population P comprising N = 10000000 individuals. For
each individual i, we generate two variables (zi, xi) sampled from zi ∼ Uniform(0, 10) and
xi|zi ∼ N(zi + 5, 2). For each unit i in P , we assign an inclusion probability proportional
to zi, so that πi = nzi/

∑N
i=1 zi where n is the sample size. Using πi, we take a PPS sample

from P to make the confidential data D.
We generate synthetic data from D using two strategies. The first method involves gener-

ating a D0 that is representative of P . To do so, we need to account for the complex design
when synthesizing. Failure to do so can result in synthetic data that do not look like P .
Since our goal is to evaluate the verification measures rather than implement a synthesizer
that handles survey weights (e.g., Kim et al., 2020; Hu et al., 2021; Mathur et al., 2024), we
simply take a simple random sample of size n0 from P to create D0. Of course, this is not
possible in genuine applications; agencies need to account for the complex design using D
to make D0. However, given that we know D0 is an accurate representation of P , ideally
the verification measures indicate that the synthetic data provide accurate estimates.

In the second method, we generate D0 directly from D but ignore the sampling design.
Specifically, we randomly draw n0 samples from N (x̄, s2x), where x̄ and s2x are the sample
mean and variance of the variable X in D. This synthesizer should lead to inaccurate
estimates since D0 is not representative of P . Thus, it allows us to examine the performance
of the verification measure when D0 offers unreliable estimates.
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We focus on factors that could affect the performance of the verification algorithm, namely
M , nk, and the tolerance intervals. We consider nk ∈ {500, 20000, 50000} and M ∈ {25, 50, 90}
partitions. For each combination of nk and M , we draw n = nkM samples from P using
PPS sampling to make D. We set n0 = n. We repeat the steps for generating (D,D0)
for 200 times for each of the two synthetic generation methods. We set ϵ = 1 for all
measures. For the tolerance intervals, we use a fixed tolerance interval of T (τ̂0, α) =
[τ̂0 − ασ̂(τ̂0), τ̂0 + ασ̂(τ̂0)]. For the adjusted interval, we set γ =

√
M and C(τ̂0, α, γ) =

[τ̂0 − α
√
Mσ̂(τ̂0), τ̂0 + α

√
Mσ̂(τ̂0)]. We consider α ∈ {1, 3, 5}.

For each pair of D and D0, we compute two quantities. First, we define a binary variable
Q, which is an indicator that takes value of 1 when τ̂ is inside the original tolerance interval,
i.e., Q = I(τ̂ ∈ T (τ̂0, α)). For the 200 pairs of (D0, D), we get Q1, . . . , Q200. We then calcu-
late rfull =

∑200
i=1 Qi/200, which is an approximate estimate of Pr(τ̂ ∈ T (τ̂0, α)). Of course,

the synthetic data analyst does not get Q or rfull, as they have only the differentially pri-
vate results. Nonetheless, we can use rfull to evaluate the differentially private measures.
Second, with each (D,D0), we implement the differentially private verification measure to
compute the posterior distribution of r. We store the posterior medians of r. Ideally, within
any simulation setting, the posterior medians of r are similar to rfull, indicating that the
differentially private verification measure tends to result in similar conclusions as using
the original interval.

4.1 Results for Synthesis Based on SRS of P

Figure 1 summarizes the results for the fixed tolerance intervals when the synthesizer faith-
fully represents P . There is obvious discrepancy between the values of rfull and posterior
medians of r, which indicates inconsistency between the conclusions drawn from using the
full data set and the partitions. The posterior medians of r are always much smaller than
their corresponding rfull, for all α considered. Quite simply, the verification measure with
a fixed tolerance interval does not have acceptable performance.

We next turn to the results for the adjusted tolerance interval, displayed in Figure 2. In
most instances, the posterior medians of r are close enough to the values of rfull that an-
alysts likely would reach similar conclusions about the verification using either r or rfull.
When α = 1, rfull and the posterior medians of r are typically around 0.3. When α = 3, the
value of rfull increases to between 0.5 and 0.75. The majority of the posterior medians of
r tend to be larger than rfull, suggesting some over-optimism in the verification decision.
When α = 5, rfull and the posterior medians of r tend to be above 0.8.

Holding constant M and α, we see that smaller values of nk correspond to larger values
of both rfull and medians of r. Evidently, in these simulations, decreasing nk increases the
probability that τ̂ and τ̂k are within the analyst’s tolerance interval. However, rfull and the
posterior medians of r tend to track each other for all nk considered. Of course, the trend
may not hold if nk gets very small, as the variance of τ̂k may become so large as to make
S/M go toward zero, particularly when the tolerance interval is tight around τ̂0 compared
to the variance of τ̂k.

Holding constant nk and α, the changes in M have little effect on the average value of
the posterior medians of r in this simulation. Nonetheless, the variance of the posterior
medians of r decreases as M grows larger. This is expected: increasing M reduces the
impact of the noise from the Laplace Mechanism on S/M , and thus reduces the variance in
SR/M . As a default, we recommend setting M = 20 or M = 25 to ensure a fine enough
grid while ideally keeping reasonably large sample sizes within the partitions.
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Figure 1: rfull (red points) and posterior medians of r (box plots) using fixed tolerance
intervals for the population total. Synthetic data are a SRS from P .

Figure 2: rfull (red points) and posterior medians of r (box plots) using adjusted tolerance
intervals for the population total. Synthetic data are a SRS from P .
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Figure 3: rfull (red points) and posterior medians of r (box plots) using adjusted tolerance
intervals for the population total. Synthetic data are a biased sample.

4.2 Results for Biased Synthesis

We now turn to the results from the simulation where the agency disregards the sampling
design when generating D0. We expect these synthetic data to be low quality for estimating
τ and desire the verification measures to indicate as such.

We first provide evidence that accounting for the survey design is important in this simu-
lation. For each generated D, we estimate τ using both the Horvitz and Thompson (1952)
estimator and an unweighted estimator Nx̄. The true value is τ = 99984562. While the
Horvitz and Thompson (1952) estimator is unbiased, the averages of Nx̄ across the simu-
lation settings tend to be around 117000000, which is much larger than τ .

We implement the verification procedure using the biased synthetic data. Because the
fixed tolerance intervals performed poorly in Section 4.1, we only display the results for
the adjusted tolerance intervals, shown in Figure 3. Regardless of the value we set for nk,
M , and α, rfull and the posterior medians of r are close to 0. The poorly generated synthetic
data lead to a biased estimate of τ , so that the τ̂k tend not to lie within the tolerance interval.
Evidently, the verification measures appropriately clue the analyst that the synthetic data
are unreliable for estimating τ accurately.

4.3 Simulation Studies with a Population Average

As an additional set of studies, we repeat the simulations from Section 4.1 and 4.2 using
the population average, X̄ =

∑N
i=1 xi/N . For the synthetic data, the estimate is simply

x̄0 =
∑

j∈D0
xj/n0, with estimated variance σ̂0 = (1 − n0/N)s20/n0. For the confidential

data D and each partition Dk, we estimate X̄ using survey-weighted ratio estimators. Re-
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using τ̂ and τ̂k for convenience, we have

τ̂ =
∑
i∈D

wixi/
∑
i∈D

wi (7)

τ̂k =
∑
i∈Dk

wi(n/nk)xi/
∑
i∈Dk

wi(n/nk). (8)

These are the usual estimators of X̄ for PPS samples as well as other common designs.
The patterns in the simulations using the population average mimic those for the pop-

ulation total. In particular, the fixed tolerance interval does not perform well, displaying
properties similar to those in Figure 1; we do not display these results here. The adjusted
tolerance interval performs reasonably well, especially when M = 25, as evident in Figure
4 for the design where the synthetic data come from a good-fitting model and in Figure 5
when the synthetic data come from a biased model. Overall, the results suggest the verifi-
cation measures can be useful for population averages as well as totals.

5 Final Remarks

In this article, we address the gap in existing verification measures for synthetic data when
the underlying confidential data come from a complex survey design. Our findings in the
simulation experiments suggest that adjusted tolerance intervals tend to yield more reliable
verifications than fixed tolerance intervals. Hence, we recommend using adjusted tolerance
intervals as a general practice. Of course, as with all simulation studies, these findings are
specific to the simulation design presented here.

The performance of the differentially private verification measures depends on the fea-
tures of the synthetic data, the confidential data, the desired tolerance interval, and the
privacy budget. Thus, it is beneficial for agencies to help analysts assess the usefulness
of the verification measures for their particular setting. One approach is for the agency to
provide a tool—perhaps as a component of the verification server—for analysts to simu-
late approximate sampling distributions of the verification measures for parameters of their
choosing. The simulations could be based on previously released data (e.g., from a prior
year run of the survey) that mimic the sampling design and population characteristics of
the confidential data. Alternatively, the simulation tool could follow the strategy outlined
by Yang and Reiter (2024). In our context, this strategy entails the following.

1. The analyst specifies a grid of values of τ̂ of scientific interest.

2. The analyst specifies a grid of possible values of the standard error of τ̂ , say σ̂, using
the sampling variance from the synthetic data as an anchor.

3. For a given (τ̂ , σ̂), the analyst generates M plausible values of the estimated totals
within partitions. These are sampled from normal distributions centered at τ̂ with
standard deviation

√
Mσ̂. Using these M draws, the analyst computes the verifica-

tion measure for the tolerance interval(s) of interest.

4. The analyst repeats step 3 a large number of times to get an approximate sampling
distribution of SR/M for that (τ̂ , σ̂).

5. The analyst repeats steps 3 and 4 for each (τ̂ , σ̂) set in step 1 and 2.
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Figure 4: rfull (red points) and posterior medians of r (box plots) using adjusted tolerance
intervals for the population average. Synthetic data are a SRS from P .

For any (M,α) and plausible set of confidential data results, the analyst can assess whether
or not the verification measure is likely to return a correct verification. If the simulated
performance is unsatisfactory at all reasonable levels of M , the analyst may have to con-
sider verifications based on other tolerance intervals, e.g., using different α than initially
proposed, to get a reliable result.

Finally, we note that some analysts of synthetic data are likely to request many verifica-
tions, which if granted can accumulate information leakage. Exactly how much leakage to
permit is a policy decision (Yang and Reiter, 2024). For example, as suggested in Barrientos
et al. (2018b), agencies may decide to give each user a privacy budget. This strategy is under
consideration for the synthetic tax file plus validation system being developed by the U. S.
Internal Revenue Service (Burman et al., 2024). See Barrientos et al. (2018b) for additional
discussion of this approach. Alternatively, the agency may decide to enforce a total privacy
budget. Such a budget could be exhausted, particularly for data where many verifications
are granted. Of course, the agency always can make the policy decision to allow for more
verifications, i.e., to increase the total privacy budget.
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Figure 5: rfull (red points) and posterior medians of r (box plots) using adjusted tolerance
intervals for the population average. Synthetic data are a biased sample.
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