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Abstract. During the last few years, the abundance of data has significantly boosted the performance
of Machine Learning models, integrating them into several aspects of daily life. However, the rise of
powerful Artificial Intelligence tools has introduced ethical and legal complexities. This paper pro-
poses a computational framework to analyze the ethical and legal dimensions of Machine Learning
models, focusing specifically on privacy concerns and interpretability. In fact, recently, the research
community proposed privacy attacks able to reveal whether a record was part of the black-box train-
ing set or inferring variable values by accessing and querying a Machine Learning model. These
attacks highlight privacy vulnerabilities and prove that GDPR regulation might be violated by mak-
ing data or Machine Learning models accessible. At the same time, the complexity of these models,
often labelled as “black-boxes”, has made the development of explanation methods indispensable to
enhance trust and facilitate their acceptance and adoption in high-stake scenarios.

Our study highlights the trade-off between interpretability and privacy protection. By introducing
REVEAL, this paper proposes a framework to evaluate the privacy exposure of black-box models and
their surrogate-based explainers, whether local or global. Our methodology is adaptable and appli-
cable across diverse black-box models and various privacy attack scenarios. Through an in-depth
analysis, we show that the interpretability layer introduced by explanation models might jeopardize
the privacy of individuals in the training data of the black-box, particularly with powerful privacy
attacks requiring minimal knowledge but causing significant privacy breaches.

1 Introduction

Recent developments have led to the widespread integration of Artificial Intelligence (AI)
systems into diverse aspects of our everyday routines. While this phenomenon may ap-
pear mostly positive, it also calls for ethical discussions and regulatory measures to ensure
a responsible usage of these systems. In fact, the availability of Big Data is bringing us
into a new era in which decisions are being made based on the knowledge distilled from
digital traces generated by the use of digital tools that are now present in everyday life.
These traces are being collected and analyzed at individual, group, and societal levels, al-
lowing for the development of powerful AI systems that can be used in critical domains
such as medicine, finance or autonomous vehicles. This setting poses several challenges
to the respect of ethical values such as interpretability, privacy and accountability. In fact,
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AI systems exploit sensitive user data for their training. This requires collecting, storing
and exchanging data: during all these passages, the protection of personal data must be
taken into account. In this context, we can find some well-known accidents, such as the
Cambridge Analytica scandal and the Uber data breach, where unintended disclosure of
personal data has resulted in harm to individuals1. In addition, the employment of sensi-
tive data to train AI systems poses privacy concerns despite the fact that the data is kept
private. In fact, the AI models deployed learned crucial patterns and information from the
private data. Because of this vulnerability, AI systems based on Machine Learning models
(ML) are vulnerable to various privacy attacks, such as the Model Inversion Attack and the
Membership Inference Attack, which can infer the data used to train the model simply by
querying the model itself. In recent times, the number of privacy attacks of this type has
increased considerably, with different variants of these attacks having different underlying
assumptions[8, 40, 28]. For these reasons, nowadays it is of crucial importance to address
the data privacy aspect also when only the AI system is published.

The importance of data privacy in AI applications is further highlighted by the European
Union’s introduction of the General Data Protection Regulation (GDPR) in 2018, which
establishes rules for companies’ use and management of personal data. The GDPR and
similar legal frameworks aim to regulate data breaches and minimize the harm caused to
individuals and organizations. Ensuring users’ privacy in the training set is just one con-
cern posed by AI systems. In fact, we need to consider that these systems are often based on
complex ensemble models and Neural Networks (NN) that are referred to as “black-boxes”
due to their opaque internal structure and decision-making process. This lack of trans-
parency and interpretability can limit the trust in these systems, especially in high-stakes
decision-making. The need for an explanation is also referred to in the GDPR, as well as
being listed as a crucial requirement for having a trustworthy AI system in the Assessment
List for Trustworthy Artificial Intelligence (ALTAI) document and in the novel proposal of
the Artificial Intelligence Act (AIA)2. To address the need for an explanation, the eXplain-
able Artificial Intelligence (XAI) literature has developed two families of explainers: local
explainers, which explain the reason for a specific instance classification, and global ex-
plainers, which explain the logic of the ML model as a whole. In [24], it has been shown that
the layer of interpretability added by an interpretable model may jeopardize the privacy
protection of individuals represented in the data used for training a black-box classifier.
In particular, in that setting the authors considered global explainers as learned functions
derived by exploiting the predictive knowledge of a black-box model learned on a private
dataset. In that setting, they proved that attacking the privacy of the explainers leaks more
information with respect to their black-boxes, leading to a higher privacy exposure.

Recent research has explored the privacy concerns associated with explainers. Notably, in
[37], the authors examined the privacy implications of explanations based on backpropaga-
tion, leveraging gradients, such as GradCam [36], as well as perturbation-based methods,
like SmoothGrad [39] and LIME [33]. Due to the structure of the explanations, these meth-
ods focus on NN. Their analysis discovered that backpropagation-based explanations pose
privacy risks, particularly for minority groups, while LIME and SmoothGrad do not. Fur-
thermore, [32] explored this issue in the context of images. Their study assessed the effec-
tiveness of Membership Inference Attacks and Evasion Attacks against various explainers,
including the ones already mentioned.

In contrast to the existing literature, our work introduces a novel framework named RE-

1Cambridge Analytica Scandal, Uber data breach
2ALTAI, AIA
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VEAL (pRivacy risk EValuation of Exposing surrogAte expLainers). This framework sys-
tematically evaluates the privacy risk associated with black-box models and their explain-
ers, whether they operate locally or globally, using surrogate models. Notably, REVEAL is
agnostic to the black-box’s structure and is versatile in accommodating different privacy
attack strategies and surrogate-based explainers. The primary objective of REVEAL is to
identify any alterations in privacy exposure that may arise when disseminating the black-
box model and/or its explainers. Differently from other works from the literature, we not
only explore the effect of the most popular privacy attack against black-box models, namely
the Membership Inference Attack, but we also analyze other privacy attacks, which require
fewer assumptions and background information with respect to the original privacy attack
and hence are more powerful and pose a greater risk to users’ privacy.

The remaining of the paper is organized as follows: in Section 2, we present the literature
related to XAI and to the Privacy, focusing on privacy breaches in ML models. Then, Sec-
tion 3 introduces the main problems we tackle in this paper, as well as the basic notions
useful for understanding our proposal. Section 4 describes the main steps of REVEAL, our
assessment methodology for global and local explainers, while Section 5 discusses the ex-
perimental results obtained by applying our framework, exploring the privacy exposure
obtained in various settings. Lastly, Section 6 concludes this paper by highlighting the
main findings of the work and possible future directions.

2 Related Work

This paper presents a methodology for assessing the privacy risk of black-box models and
their explainers, based on surrogate models, being them global or local. Accordingly, in
this section we first review the literature related to privacy, and in particular we will focus
on the task of assessing the privacy risk, then to XAI.

2.1 Privacy

Privacy has been a subject of concern in various fields, with two main objectives. First, the
primary goal is to evaluate the privacy risks of people involved in information systems of
various kinds, including also ML tasks. Once the privacy risk has been assessed, there is the
need to shelter information systems against harmful disclosures of sensitive information.
In the following, we describe in detail the first procedure, e.g. the privacy risk assessment,
given the topic of this work. The first objective of data privacy is to evaluate the privacy
risks of users represented in a dataset using a privacy risk assessment methodology. De-
pending on the results of this assessment, a privacy protection technique can be applied
to data or ML models to safeguard users from malicious adversaries. These protection
techniques are based on established privacy models such as randomization, differential
privacy, and k-anonymity [44, 35, 11, 9]. They apply some transformation on the data or
the ML models in a way that guarantees specific thresholds on the risk of privacy leaks.
However, the main objective of our work is to assess the privacy risk. For this reason, in
the following we present the literature related to the field of privacy risk assessment.

Assessing the privacy risk requires quantifying the release of sensitive information, which
can occur by accessing data directly [44] or by accessing ML models [1, 38, 12]. The problem
of privacy disclosure through ML models is a recent breakthrough. In fact, ML models learn
from data, and even if the data is not exposed, querying the model may still lead to privacy
leaks about the individuals in the training dataset. In the following, we first describe the
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main procedure to assess the privacy risk analyzing the data and then we focus on the
privacy risk assessment of ML models.

In the context of privacy risk assessment on the data, Pratesi et al. proposed PRUDEnce[30]:
a framework enabling a systematic assessment of empirical privacy risk concerning specific
privacy attacks on data. Technically, the framework simulates the presence of an adversary
that tries to re-identify the people in the dataset under analysis. To this end, PRUDEnce
generates all the possible background knowledge about the users of the dataset that the
adversary may know, and assesses the risk with respect to the worst case scenario. This
methodology is general and allows for a privacy risk assessment of different kinds, de-
pending on the kind of data and privacy attacks considered. In recent years, the evaluation
of privacy risks in datasets has gained significant attention, with research exploring various
directions. A key focus has been on sequence data, such as trajectories or features extracted
from them, which has been extensively analyzed. For instance, in [26, 27, 25], privacy risk
evaluation adopts a user-centric perspective, aiming to help users understand why a par-
ticular privacy risk has been identified and how it can be mitigated. Similarly, Gomes [16]
recently conducted an in-depth analysis of privacy risk assessment specifically for trajec-
tory data. Beyond trajectories, sequential data such as text has also been investigated. In
particular, given also the complexity of the data under analysis, there are approaches that
focus on analyzing the psychometric profiles of users [22].

In recent years, similar approaches have been proposed to evaluate the privacy exposure
of ML models. The primary objective in this context is to determine whether the ML model
unintentionally reveals sensitive information. One of the most popular attacks of this kind
is the Membership Inference Attack (MIA), proposed by Shokri et al. [38]. In this case,
the aim is to infer the membership of a given record to the training set of a classification
model. Following this work, Choquette-Choo et al. [8] proposed a variant of the original
MIA, called LABELONLY attack, in which some of the assumptions of the Shokri’s attack
are relaxed. In particular, MIA needs the probability vector for inferring the membership
of a record while LABELONLY exploits only the hard labels. Recently, Rizzo et al. proposed
ALOA ([23]), a variant of the LABELONLY, which assumes an adversary with weaker prior
knowledge with respect to the LABELONLY, i.e. no statistical information are known by
the attacker, showing a higher privacy risk exposure. In addition to MIA and its variants,
Fredrikson et al.[13, 12] designed the so-called reconstruction attacks, where the attacker’s
objective is to reconstruct one or more training samples and their respective training labels.
Another type of attack is the property inference attack, introduced by Ganju et al. [15],
which aims to extract unintentionally learned information that is not explicitly encoded as
features in the ML model. For instance, property inference attacks can uncover information
such as the gender ratio in the training data set. Such attacks can be used in tandem with
MIA or reconstruction attacks to enhance the adversary’s knowledge.

2.2 Explainable Artificial Intelligence

Today, interpretability is a crucial area of research, with the objective of explaining the inter-
nal reasoning of ML models, commonly known as black-box models, due to their complex
internal reasoning that is often difficult to comprehend. A comprehensive analysis of the
current state-of-the-art in this field is available in [2]. For this work we focus on post-hoc
explainers, in which, given a black-box b, the main objective is to explain it from the out-
side, without modifying the original ML models. In this context, there are two main types
of explainers: global explainers, which describe the overall behaviour of the ML model, and
local explainers, which aim to explain the internal reasoning of the ML model when classi-
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fying a single record. Among the most popular explainers for obtaining local explanations
include LIME [33] and SHAP [21], which provide feature importance explanations, e.g. they
assign an importance value for each variable in the input record, and LORE [17], which out-
puts rules and counterfactual rules (i.e. rules to follow to obtain the opposite prediction).
For the global case, most of the research in this area focuses on tabular data, where the
surrogate models produced may be Decision Tree (DT) [10, 3], rule-based classifiers [34],
or prototypes [20]. In this paper, we focus on surrogate-based explainers, and we exploit
TREPAN [10] and LORE [17], which outputs tree-based structures and rules. TREPAN is one
of the first global explainers proposed in the literature, which aims to explain the overall
behavior of a black-box by using an enrichment of the input training data to define a DT
global surrogate model. A detailed explanation of TREPAN is provided in Section 3. LORE,
instead, is a local explainer which outputs rules and counterfactual rules by exploiting a
genetic algorithm to generate synthetic neighbourhoods around the input record.

3 Preliminaries

Before describing the details of our framework, we first present the legal and ethical rea-
sons behind the necessity of creating REVEAL (Section 3.1). After having presented the
motivation behind the development of this framework, we then introduce some basic no-
tions that are fundamental for understanding the details of our approach. In particular, we
first define what a black-box model is and introduce the nomenclature used throughout
this paper in Section 3.2. Following, we describe the surrogate-based explainers employed
in our work, beginning with the global explainers in Section 3.3, and then the local ex-
plainer in Section 3.4. Lastly, we provide the details of the three privacy attacks against the
black-box models we exploit to validate REVEAL: firstly, in Section 3.5, we describe the first
version of the Membership Inference Attack (MIA). Following, we introduce two variants
of MIA: in Section 3.6 we present LABELONLY, a fast variant of MIA in which the attacker
only needs the hard labels out of the black-box, while in Section 3.7 we report ALOA, an
agnostic version of MIA, in which the majority of the assumptions of MIA are relaxed.

3.1 Legal framework for AI

In recent years, the increasing adoption of AI systems has prompted the introduction of
numerous regulations and laws to govern these systems while promoting their ethical and
trustworthy deployment. The primary objective of these diverse laws can be summarized
as promoting the advancement in AI technology while mitigating potential risks. Given the
multitude of regulations worldwide, various ethical considerations come into play. These
include the necessity for data governance and record-keeping to ensure accountability, re-
liability, accuracy, and resilience of AI systems. In addition, cybersecurity is a key concern
cited by the majority of the legislation ([47, 7, 29, 45, 19]). Some laws emphasize the need to
foster innovation ([7, 29]), while others concentrate on upholding human rights and demo-
cratic values specific to their respective nations ([45, 47]) while promoting innovation and
with a clear aim in becoming a leader in the sector.

Despite the disparities among global legislation, they all concur on one crucial aspect:
there is the need to achieve better trust in the AI systems and to reach this objective com-
prehending the rationale behind AI outputs is a mandatory task. This challenge originates
from the opacity of ML models employed in AI systems. These models consist of intricate
mathematical functions that are often challenging or even impossible to decipher, making
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them the so-called black-box or opaque models. The difficulty of understanding the internal
workings of ML models leads to several disadvantages. Most notably, it hampers the ability
to debug model behaviour and identify errors. These errors may encompass technical mis-
classifications, but they can also involve biases and discrimination against minority groups.
As an example, consider the infamous Compas recidivism case [31], where minorities were
wrongly categorized as high-risk individuals, resulting in their unjust incarceration due to
historical data that associated them with high-crime neighbourhoods. Given this context,
understanding the inner workings of AI systems is crucial for addressing these challenges.
While developing appropriate explanations—such as those that are comprehensible, reli-
able, and faithful to the model—and methods to validate them remains complex, terms like
explanations, interpretation, and transparency are key to modern AI regulations, including the
AIA and those from China, the UK, the United States, and Japan ([7, 19, 45, 29]).

The United States, for instance, proposed the Algorithmic Accountability Act [42] and the
more recent Blueprint for a Bill of AI Rights [43], in which it is highlighted the paramount im-
portance of transparency and comprehending the decisions made by automated decision-
making systems. These documents explicitly mention the need to use Explainable AI tech-
niques and indicate the government’s commitment to researching and establishing best
practices in this domain. When considering Europe, there is the AIA. It uses a risk-based
approach, similar to the General Data Protection Regulation (GDPR): depending on the risk
level, there are different requirements. The categories listed in the AIA are unacceptable risk,
high risk, limited risk and minimal risk, depending on the context of the use of the AI sys-
tem, the potential impact on the health and safety of people as well as the respect of the
fundamental rights of persons. The unacceptable risk category is the one with the highest
risk: the AI systems that fall into this category are considered a danger to the people who
use them, a threat to the safety, livelihoods, and rights of people. Hence, the AIA imposes
very strict limitations on this category of systems. Examples of AI systems in this cate-
gory are social scoring by governments or toys with voice assistance that may encourage
dangerous behavior. The rest of the categories have lower risk levels, in decreasing order
starting from high, limited, and minimal risk. For high risk AI systems, the AIA requires clear
and understandable information about their abilities and limitations, as well as transparent
decision-making processes. In this category we can find AI systems involved in critical in-
frastructures, such as transports, in which the life and health of people may be put at risk,
or AI models part of the law enforcement or migration.

In the context of high-risk systems, the AIA mentions that the data subjects should have
the right to obtain explanations for AI-driven decisions. In particular, the primary concern
of the AIA is on transparency and human oversight, including aspects of documentation
and risk management, addressing the opacity of AI systems in a holistic manner, as a result
of an interrelated set of attributes of the AI system. Even if not directly mentioned, the high
risk systems align effectively with Explainable AI techniques, which explain the internal
reasoning of complex AI models. Providing documentation and human oversight is part of
the things to do to achieve transparency, but it may not be sufficient.

Considering the limited risk systems, they have less strict requirements, but they still must
be transparent, informing users about their capabilities, reasoning, and limitations. In ad-
dition to this setting, it is important to mention that also in the General Data Protection
Regulation [48], into force since 2018, the topic of interpretability was mentioned, stating
that users have the right to an explanation.

When considering the United Kingdom, in its AI Regulation Policy Paper [45], it prioritizes
Explainable AI as a mandatory technique. In particular, the UK recognizes the importance
of ensuring that AI systems are transparent and accountable to the public, while acknowl-
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edging the ongoing technical challenges associated with providing comprehensive and sta-
ble explanations. Also China, a key player in AI development, addressed the transparency
concerns. The Internet Information Service Algorithmic Recommendation Management Provi-
sions [6], the nation’s first algorithm regulation, emphasizes the significance of Explainable
AI in building trust and improving AI model development, as well as the New Generation
Artificial Intelligence Development Plan [7].

From this first description of the AI regulations around the world, it is evident that there
are similarities but also differences among them. In [18] the authors first analyze the sim-
ilarities and differences between the AIA and US Algorithmic Accountability Act. In par-
ticular, the authors highlight how the former is focused on a long-term plan, in which the
interest is to recreate a Bruxells effect, as in the case of GDPR. In the case of the US, on the
other hand, regulation is sound and consistent, but focused more on the present than the
long term. In particular, the authors also address the issue of a possible Washington effect.

On a global scale, UNESCO’s Ethics of Artificial Intelligence publication [46] emphasizes
several key principles, with transparency as a central focus. This international organiza-
tion highlights transparency’s crucial role in fostering the responsible and ethical use of
AI technologies all over the world. These legislative efforts reflect a shared consensus that
transparency and a deep understanding of AI systems are essential for achieving trustwor-
thy AI systems, despite the technical challenges of providing comprehensive explanations.

Even if there are several advantages in using XAI, it can also pose privacy issues: the
explainability techniques often need more detailed data to provide reliable explanations,
which can be a concern, especially when dealing with sensitive information. When dealing
with this kind of problem, we refer to the GDPR, a European regulation since 2018, which
requires assessing the privacy risks for individuals involved and, based on the results of
the assessment task, it requires protecting the privacy of the users under analysis. Given
the interplay among the AIA, GDPR, privacy, and XAI, we saw the need for the definition of
REVEAL: a framework able to assess the privacy exposure of the AI model and its explainer.

3.2 Black-box models

A classifier, is a function b : X (m) → Y which maps data instances (tuples) x from a feature
space X (m) with m input features to a decision y in a target space Y of size L = |Y|, i.e., y
can assume one of the L different labels (L = 2 is binary classification, L > 2 is multi-class
classification). We use b(x) = y to denote the decision y taken by b, and b(X) = Y as a
shorthand for {b(x) | x ∈ X} = Y . Instead, we denote by yb the probability vector of size
L in which the sum of all the values is one. An instance x consists of a set of m attribute-
value pairs (ai, vi), where ai is a feature (or attribute) and vi is a value from the domain of
ai. The domain of a feature can be continuous or categorical. We assume that a classifier is
available as a function that can be queried at will. In case b is a complex classifier, whose
internals are either unknown or known but uninterpretable by humans, it is called black-
box classifier. Examples of black-box classifiers are Neural Networks, SVMs, and ensemble
classifiers, such as Random Forests, XGBoost or LightGBM. On the contrary, if a classifier is
human-comprehensible, i.e., the reasons for its decisions are understandable by a human,
we call it an interpretable surrogate classifier. Examples of such predictors include rule-based
classifiers, decision trees, and decision sets [14, 2].
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3.3 Black-box Global Explanations

In the landscape of XAI, two primary categories of explainers exist: local explainers, which
focus on analysing a specific record, or global explainers, which aim to explain the overall
behavior of a black-box model, considering explanations for all of the possible classes. In
this paper we exploit TREPAN [10] as global explainer as well as a decision tree. TREPAN
generates the surrogate explanation model by training a decision tree on an enriched ver-
sion of the original dataset, with labels obtained through queries to the black-box model.
TREPAN approaches the task of explaining neural networks as an inductive learning prob-
lem, simplified by the ability to query the black-box model during the process. This capa-
bility is a key aspect of the method, as it allows for obtaining record labels, selecting internal
node splits, and determining whether a node exclusively covers records of the same class,
which is a crucial parameter when the decision tree are used for explanation purposes.

3.4 Black-box Local Explanations

For this work we focus on post-hoc local explanation methods for tabular data, which ex-
ploit a surrogate model. In particular, among the different possibilities offered by the state-
of-the-art, we have chosen LORE [17], an explanation method that outputs rules to explain
the reasons that lead the black-box model to its final prediction. It also provides counter-
factual rules that explain what changes are needed to obtain the opposite prediction. The
reason behind the selection of this method is the fact that its rules closely resemble human
reasoning, and the availability of both rules and counterfactual rules allows for an in-depth
analysis of the neighborhood around the point under analysis.

LORE is a post-hoc, local and agnostic explanation method capable of explaining any type
of black-box model, provided the ability to query the black-box for predictions. For this
work, we utilized the latest version of the method [17], which is more stable compared to
state-of-the-art methodologies and ensures a high fidelity of the surrogate model. Given a
black-box model, denoted as b, performing a classification task, and a record x for which
b predicted a target ŷ = b(x), LORE generates a set of synthetic neighbors, denoted as Z,
around x, by employing a genetic algorithm. This step aims to create a set of points that are
close to the one we aim at explaining. Subsequently, LORE queries b to obtain the predicted
labels for all synthetic records, resulting in Zy = b(Z). The synthetic dataset obtained
is then used to train a surrogate decision tree model. The surrogate model is a simple,
yet effective classifier in the vicinity of the point we need to explain. From this surrogate
model, LORE extracts rules and counterfactual rules. The process of creating synthetic data,
labeling them using b, and constructing a surrogate decision tree can be further customized.
Specifically, based on the empirical results presented in the main paper, we opted to create
multiple synthetic datasets to obtain a better description of the space around the point
x. For each synthetic dataset generated, LORE trains a surrogate decision tree and then
combines all of them to achieve greater stability.

3.5 Membership Inference Attack

In the paper [38], the authors assume that a machine learning algorithm is used to train a
classifier b that captures the relationship between data records and their labels. In order to
attack b trained on Dtrain

b , MIA defines an attack model A(·): it is a machine learning model
able to discern if a record was part of the training dataset Dtrain

b or not. Note that, Dtrain
b

is composed by (xi, yio)b, where yio is the true labels associated to xi
b. In practice, the attack
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A(·) is a binary classifier that predicts IN if the record was part of the training set or OUT
otherwise. A(·) is trained on a dataset Dtrain

a : (xi, yi)a, where each xi
a is composed by the

label predicted by the classifier b for a record under analysis and its probability vector yi of
length L obtained by querying a shadow model si(·) mimicking b; while yia is the correct
membership label and that can be IN or OUT. The attack model A(·) is a voting model
composed of L machine learning models: one for each output class of the classifier model
under attack. The key factor in this attack is the knowledge of the probability vector: given
how the probabilities in yb are distributed around the true value of the record, the attack
model computes the membership probability Pr{(x, y) ∈ Dtrain

b }, which is the probability
that x belongs to the IN class, i.e. it is part of the training set. To obtain the dataset (xi, yi)a,
on which the MIA model A(·) is trained, the authors used shadow models. In the original
paper the authors assume a black-box setting, in which there is no knowledge about either
the type of classifier to be attacked or the training dataset used to train it. In the following
we use the term black-box model to indicate the classifier to be attacked. To overcome the
limitation of absence of knowledge on data and model, they employed a set of k shadow
models si(·): machine learning models trained to mimic the decisions of the black-box
model b(·) we would like to attack. These shadow models are trained on Dtrain

s : (xi, yi)s,
in which xi

s has the same format and similar distribution w.r.t. to the dataset employed to
train the black-box model X , while yis is the predicted class obtained querying the black-
box model b(·). After the training, we know which record was part of the training dataset
(class IN) for each shadow model and which was part of the test one (class OUT). Hence, we
can exploit this information to create a supervised training dataset for training the attack
model A(·), which is Dtrain

a .
We highlight that the datasets employed for training the shadow models are disjoint from

the unknown dataset used to train the black-box model. In [38] the authors tested different
kinds of training data for the shadow models: (i) a random dataset, where data are ran-
domly generated and then labelled querying the black-box model; (ii) a statistical dataset, in
which the attacker knows the statistical distribution of the original training dataset. Hence,
he/she can exploit this information to create a synthetic dataset; (iii) a noise dataset, in
which the attacker knows a portion of data from the same distribution of the original train-
ing dataset but with some noise. These different types of training datasets for the shadow
models allow for privacy attacks of different strengths: from the least severe attack, the
random one, to the most powerful, i.e., the noise one.

3.6 Label Only Membership Inference Attack

A variant of MIA was designed in [8], which relaxes some requirements of the original
attack. Given a black-box model b, LABELONLY ALO(·) targets it by exploiting only the
hard labels, i.e. the output predictions of the model under analysis. Hence, the probability
vector yi, employed by MIA, is not exploited in LABELONLY. In particular, it develops
a procedure that derives a model’s robustness to perturbations and uses it as proxy for
model confidence in its predictions. The basic intuition is that records which exhibit high
robustness belong to the training dataset. ALO(·) exploits a dataset Dtrain

s for training
only one shadow model s(·), i.e., a ML model mimicking the decision of black-box model
b. The dataset Dtrain

s : (xi, yi)s is composed of records with the same format and similar
distribution w.r.t. to the dataset employed to train the black-box model b, and is labelled
by the predicted class obtained querying b. After training the shadow model, we know
which record was part of the training dataset (class IN) of the shadow model and which
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was part of the test one (class OUT). For each tuple xi
s the algorithm generates a set of

records resulting from its perturbation and labels the generated records using the trained
shadow model. Analyzing the percentage of generated records having the same predicted
class of xi

s, the algorithm computes the robustness score of the black-box with respect to
the xi

s classification. The attack identifies a threshold by iteratively analyzing robustness
scores assigned to records in the training and testing datasets of the shadow model. This
threshold separates records into two classes: IN (training set of the shadow) and OUT (test
set of the shadow). The attack then uses this threshold to classify new records as being part
of the training set of the black-box model or not.

3.7 Agnostic Label Only Membership Inference Attack

The Agnostic Label Only Attack (ALOA), a variant of the LABELONLY attack, has been
proposed recently [23]. Similar to the LABELONLY, ALOA does not require the access to the
probability vector. However, this privacy attack has weaker assumptions with respect to
the LABELONLY, since it does not need to know any kind of statistics about the data used
for training the ML model we aim at attacking. In practice, the only requirement is to know
the total number of variables to be able to query the black-box, with no information needed
about the minimum, maximum, mean, or standard deviation.

Techinically, Aaloa(·) exploits a dataset Dtrain
s for training only one shadow model s(·), i.e.,

a ML model mimicking the decision of black-box model b. The dataset Dtrain
s : (xi, yi)s is

composed of randomly generated records with the same format of the training dataset of
the black-box model b, and is labelled by the predicted class obtained querying b. At this
point, similarly to the other attacks, we know which record was part of the training dataset
(class IN) of the shadow model and which was part of the test (class OUT). At this point,
ALOA generates a set of synthetic records by perturbing the record under analysis. This
perturbation procedure is completely agnostic and do not exploits any kind of statistics
about the original dataset. Similarly as in the LABELONLY attack, the percentage of gen-
erated records having the same predicted class of the record under analysis is exploited
to compute the robustness score of the black-box. At this point the robustness score is
exploited to find the threshold that best separates the classes IN and OUT.

4 Framework for the Privacy Risk evaluation

In this section, we present the structure and components of our framework, REVEAL (pRi-
vacy risk EValuation of Exposing surrogAte expLainers), which is designed to evaluate
the privacy exposure of black-box models and assess how this exposure may change when
they are explained using local or global surrogate-based explainers.

This framework, depicted in Figure 1, consists of three main modules: Attack-Training,
which trains the attack models to be simulated, Attack-Application, which executes the
trained attacks and Attack-Evaluation, which quantifies the privacy exposure introduced
by an explainer. Algorithm 1 reports the pseudo-code of the whole assessment framework.

The instantiation of the three modules depends on the assumed threat model, the type
of privacy attack to be performed, and the type of surrogate explainer used to explain the
black-box model. We emphasize that our framework is specifically designed for surrogate-
based explainers, i.e. explainers that rely on a surrogate model to generate explanations.
However, our approach is not limited to any particular type of data: whether the input to
the black-box model, and consequently the explainer, is tabular, image, or time series data,
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Figure 1: Schema of REVEAL, for Privacy Exposure of black-box models and their explainers. The
framework is composed by three modules: the first one, Attack Training is devoted to train the chosen
attack against the black-box and its explainer. Following, the Attack Application applies the trained
privacy attacks to a dataset predicting the membership of each record. Lastly, the Attack Evaluation
evaluates the changes of the privacy exposure when attacking the black-box and its explainer. As an
example, in the context of global explanations, we consider a Random Forest as the black-box model
(b) and TREPAN as the explainer (E). At this point, we train two separate attack models: Attackb for
the RF and AttackE for TREPAN. Once trained, we perform the actual attacks on RF and TREPAN and
evaluate the performance of these attacks against both models. The same setting can be considered
for the local explanation case, with the difference that, instead of TREPAN, we can use methods such
as LORE, which provide explanations for individual records. In this case, the final attack may involve
an ensemble of the various local attacks created.

REVEAL remains unaffected. In the following, we describe the objective and role of each
module within the framework.

Algorithm 1: PrivacyRiskExposure(b, E, Dtest, Attackb, AttackE , BK)

1 (Ab, AE)← Attack-Training(b, E,Attackb, AttackE , BK) ;
2 (Dtest

b-member, D
test
E-member)← Attack-Application(Ab, AE , D

test) ;
3 [∆Acc,∆P ,∆R]← Attack-Evaluation(Dtest

b-member, D
test
E-member) ;

4 return [∆Acc,∆P ,∆R,∆F1
]

Attack-Training Module Given the back-box model b and its explainer E, the first mod-
ule aims at learning two privacy attack models: the first one, namely Ab, is tailored to
attack the black-box model b, while the second one, referred to as AE , is tailored to attack
the explainer E. As explained in Section 2, different attacks can be conducted for audit-
ing a machine learning model. However, one of the most used attacks is the membership
inference attack [38], aiming at inferring the membership of records to the training data
of the machine learning model. This type of attack is also the foundation of other attacks
aiming at extracting records from training data [5]. In this work, we propose to instanti-
ate the model under analysis with learning algorithms for training these kinds of attacks.
We highlight that the function Attackb(·), aiming at learning the attack model Ab, can be
different from AttackE(·) that is used for learning AE . This difference could be due to
the fact that the black-box and the explainers might be ML models completely different
that do not allow the attack under similar assumptions. For example, we could have a
black-box that does not return the confidence vector for each prediction while its explainer
could return it. Consequently, AttackE(·) could exploit this additional information. The
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Algorithm 2: Attack-Training (b, E,Attackb, AttackE , BK)

1 X train
a ← GenerateAttackDataset(BK) ;

2 Yb ← b(X train
a ) ;

3 Ab ← Learning: Attackb(X
train
a , Yb) ;

4 YE ← E(X train
a ) ;

5 AE ← Learning: AttackE(X
train
a , YE) ;

6 return Ab, AE

two functions executed in this module may be implemented using one of the algorithms
available in the literature, such as the Membership Inference Attack [38], the Label-Only
Attack [8], the ALOA Attack [23], all introduced in Section 3, or any other attack for ML
models. Moreover, global and local explainers might be required to design and develop
a slightly different learning procedure for the attack. As an example, in the following, we
propose learning an ensemble of attack models for attacking local explainers and assessing
the privacy risks introduced by these types of explainers. The pseudo-code of this module
is reported in Algorithm 2. We highlight that before training the two attacks, this module
also generates the dataset X train

a useful for learning the attacks. Such a dataset is labeled
by using both the black-box (line 2, Alg. 2) and the explainer (line 4, Alg. 2). The type of
attack dataset generated strongly depends on the background knowledge of the adversary
BK. For example, if an adversary knows the distribution of the black-box training data,
the attack can exploit this knowledge to generate the attack dataset. The performance of
the attacks can be heavily affected by the properties of this dataset.

Algorithm 3: Attack-Application(Ab, AE , D
test)

1 Dtest
b-member ← Ab(D

test) ;
2 Dtest

E-member ← AE(D
test) ;

3 return (Dtest
b-member, D

test
E-member)

Attack-Application Module The second module of our framework is called Attack- Appli-
cation and applies the attack models learned in the previous module Ab and AE for inferring
the membership of individual records to the training of b. The pseudo-code of this module
is reported in Algorithm 3. In particular, given a set of records Dtest, this module conducts
the two attacks against the black-box and the explainer, respectively, and for each record
outputs their membership prediction inferred by the two attack models, i.e., the labelled
datasets Dtest

b-member and Dtest
E-member (line 1-2, Alg. 3). The two sets of labelled records are the

base for computing and assessing the Privacy Risk Exposure for both the black-box model
and its explainer. The instantiation of this module strongly depends on the attacks learned
in the previous module and the type of explainers (global vs. local). Indeed, later in this
chapter, we will show that this module is the main difference between the assessment of
global and local explainers.

Attack-Evaluation Module The output of the second module is then fed into the third
and final module, the Attack-Evaluation module. This module aims to analyze and quantify
the change of privacy risk exposure between the black-box model b and its explainer E.
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Algorithm 4: Attack-Evaluation(Dtest
b-member, D

test
E-member)

1 Cb-member ← ConfusionMatrix(Dtest
b-member) ;

2 CE-member ← ConfusionMatrix(Dtest
E-member) ;

3 [∆Acc,∆P ,∆R,∆F1
]← Compute∆(Cb-member, CE-member) ;

4 return [∆Acc,∆P ,∆R,∆F1
]

The analysis can be performed using different metrics that evaluate the performance of the
attack models in predicting the membership of the individual records to the training data
of b. This module first evaluates the confusion matrix for the attack against the black-box,
Ab (line 1, Algorithm 4), then for the attack against the explainer, AE (line 12 Algorithm
4). From these partial results, the module performs an overall evaluation in terms of stan-
dard ML metrics. In particular, this module computes the difference in privacy exposure in
terms of accuracy (∆Acc), precision (∆P ), recall (∆R) and f-measure (∆F1

) of the two attack
models. In other words, each ∆µ is computed as ∆µ = ∆E

µ −∆b
µ, where µ denotes one of

the metrics among accuracy, precision and recall. Analyzing only accuracy for evaluating
membership inference attacks could be inadequate because these metrics associate equal
costs to false positives (false memberships) and false negatives (false non-memberships).
The first type of error reduces the utility of the attack, while the second one reduces the
identification of real members. An attack should maximize the true positive rate (or recall)
because it measures how many members are identified. We highlight that negative values
of ∆ for a given measure µ mean that the explainer tends to mitigate the privacy risks of
the black-box, i.e., the explanation procedure is confusing the attack; positive values of ∆
instead highlight higher privacy risks due to the level of transparency introduced by the
explainer; lastly, ∆ = 0 means that pairing an explainer with a black-box classifier is not
increasing the privacy risks.

4.1 Instantiation of REVEAL for Global and Local Explainers

REVEAL is a framework for assessing the privacy exposure in black-boxes and their explain-
ers. The framework presented is generic and can work with any ML model, as well as any
surrogate-based explainer, but needs to be instantiated differently depending on the attack
considered due to the different background knowledge possessed by the adversary. In this
work, we propose to instantiate such a framework with attacks belonging to the family
of membership attacks and we investigate the impact of different levels of adversary back-
ground knowledge on the success of the attack. In particular, we investigate the privacy
exposure of global and local explainers under the attacks MIA, LABELONLY and ALOA,
described in Section 3.

4.1.1 REVEAL for Global Explainers

Instancing REVEAL for the assessment of the privacy risk exposure of global explainers
is straightforward. A global explainer based on a surrogate model E is a ML model that
imitates the global behaviour of a black-box classifier b. As a consequence, it is enough to
follow the procedure described in the previous section, implementing the training of one
of the membership-based attack models presented above. In particular, in the first module,
Attack-Training, trains both (i) a privacy attack, named Ab, against b is trained, being it MIA,
LABELONLY or ALOA; and (ii) a privacy attack, named AE , against the explainer E. Then,
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these two attacks are fed into the Attack-Application module, which applies these attacks to
a test dataset, namely Dtest. The result will be to obtain two labelled datasets: one which
for each element of the dataset has the membership class IN or OUT determined by the
attack Ab, and one with the class determined by the attack AE . Lastly, the Attack-Evaluation
module quantifies the probability of success of the two attacks, against the black-box and
the explainer, computing the difference in the performance of both concerning precision,
recall, and accuracy.

4.1.2 REVEAL for Local Explainers

When employing the REVEAL framework to assess the privacy vulnerability of a black-box
model and its local models, it is essential to tailor the attack methodology to the specific
scenario being analyzed, where E represents a collection of local surrogate models. In
this context, each local explainer is customized to describe a small portion of the decision
boundary of the black-box. Therefore, to ensure that the entire decision boundary of the
black-box model b is properly described, it is imperative to consider a variety of local ex-
plainers that capture different types of local knowledge. This means that if an adversary
wants to jeopardize the privacy of a black-box attacking its local explainer, it needs to gen-
erate a set of local explainers that all together approximate the black-box’s global behavior.
To this end, we propose a privacy attack procedure designed to target local surrogate-
based explainers. Specifically, the procedure assumes E as a set of local surrogates, i.e.,
E = e1, e2, . . . , en. Following the pseudo-code outlined earlier in Algorithm 2, the AttackE
is computed as an ensemble of multiple attacks, with one attack tailored for each local sur-
rogate model in E. The resulting ensemble of attacks is denoted as AE = Ae1, Ae2 , . . . , Aen

and is passed, along with the attack tailored for the black-box Ab, to the Attack-Application
module. In this setting, the module needs to evaluate the effectiveness of the ensemble of
attacks AE against the attack for the black-box Ab. The application of AE can be instanti-
ated in different ways, depending on the specific information assumed by the attack, e.g.
the different background knowledge the attacker may have. In the following, we present
two ways for implementing Attack-Application in the local setting depending on the knowl-
edge the attack produces. In particular, we consider two approaches: the Confidence Vector
Approach, based on the prediction probabilities vectors, applicable to every membership
attack based on the creation of ML attack models, such as the original MIA; and the Thresh-
old Approach, tailored for the attacks which do not create a ML model, but a thresholding
procedure, such as LABELONLY and ALOA.
For the Confidence Vector Approach, we apply an evaluation procedure that exploits the

prediction probabilities vectors outputted by the attack models. This setting is tailored
for methods such as MIA, which trains a ML attack model for each target output from the
black-box model. Having created these attacks based on ML models, we assume to have
access to the prediction confidence vectors, c = [cIN, cOUT], where cIN is the probability that
the record belongs to class IN, while cOUT is the probability that the record belongs to class
OUT and the sum of all the two elements is equal to 1. Hence, we exploit this information to
identify among the different attacks only the ones that are the most confident record-wise.
Technically, for each record x, we apply all the attack models, obtaining a confidence vector
for each one, i.e., Cx = {cA1 , cA2 , . . . , cAn}, where n is the number of attacks for the n local
explainers. At this point, for each vector cAi , we compute the absolute difference between
the two probabilities, i.e., di = |c

Aei

IN − c
Aei

OUT|.
Once we get the corresponding d value for each attack model, we select only the attack

models expressing significant confidence in their decisions. To this end, we select the mod-
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els Aej having a dj value above the average. In particular, we use the following constraint
for selecting the attack set: {Aej |dj ≥ (avg(d1, d2, . . . , dn) + σ(d1, d2, . . . , dn))}, where σ is
the standard deviation. Among the top attack models selected, we apply a majority voting
procedure to select the final membership prediction for each record.

In the case of Threshold Approach, the Attack-Evaluation strategy is tailored for mem-
bership attacks that do not train ML models as attacks but use a thresholding procedure.
Examples of attacks of this family are LABELONLY and ALOA. In this setting, we exploit
the different information available, which is the threshold found and used by each attack
for the membership prediction. Given the record x under analysis, by applying the attack
Aei and we obtain a robustness score sAei , which is compared to the score threshold stAei

for determining IN or OUT class. Hence, we exploit the absolute distance between the ro-
bustness score and the score threshold (i.e., di = |sAei − stAei |) to identify the most reliable
attacks. In particular, we are interested in the attacks which have a greater distance be-
tween the robustness score of the record and the score threshold. We select only the top
attack models, exploiting the elbow method, i.e., we select the most important models with
a d value greater or equal to the one corresponding to the knee in the curve of the ordered d
values Formally, we select the following set of attack models: {Aej |dj > elbow(d1, . . . , dn)}.
We apply a majority voting strategy to obtain the final membership prediction on the set
of attack models selected. These two evaluation methods presented are only two possible
initializations, dependent on the privacy attack considered.

5 Experiments

In this section, we instantiate our framework to conduct a series of experiments, exploiting
various datasets, black-box models, and explainers. Our primary objective is to analyze
the behavior of black-box and explainer systems, specifically focusing on how privacy ex-
posure may vary across different experimental settings. We present the datasets and the
ML models employed in Section 5.1. Following, we present the application of REVEAL,
exploiting the MIA, LABELONLY and ALOA, in Section 5.1.

5.1 Data, Machine Learning models and Explainers

For validating the framework presented in this paper we employed three tabular datasets,
each with particular characteristics. Although REVEAL is data-agnostic, we focused our
analysis on tabular data due to the availability of privacy attacks targeting both ML models
and surrogate-based explainers in this context.

We select ADULT, a benchmarking dataset composed of 48, 842 records and 15 variables,
both numerical and categorical. It describes employees with information like age, job, cap-
ital loss, capital gain, marital status, etc. The labels have values <= 50K or > 50K (in the
following referred to respectively as Class 0 or Class 1), indicating whether the person will
earn more or less than 50k in a fiscal year. We chose this dataset on the basis that it is often
used for benchmarking and has also been used in the papers of MIA, ALOA and LABE-
LONLY, which we exploit in this work. This dataset was also used as a validation set of the
attack for the MIA and LABELONLY. We also consider BANK, which is a public dataset con-
taining information of the customers of a bank, with the objective of classifying the people
in good or bad creditors. It is formed by 150, 000 records and 10 numerical variables, with
information like age, monthly income and the number of loans already opened. The selec-
tion of this dataset is due to the huge amount of records available as well as the peculiarity

TRANSACTIONS ON DATA PRIVACY 18 (2025)



82 Francesca Naretto, Anna Monreale, Fosca Giannotti

of having only numerical variables. Lastly, we also consider the SYNTH dataset, which is a
synthetic dataset generated by exploiting a Gaussian mixture model. It has 30, 000 records
and 30 numerical variables, with 3 classes. The selection of this dataset is due to the multi-
classification problem and to test the behaviour of the attack in a controlled environment
due to the synthetic creation of the dataset.

Regarding the pre-processing, for ADULT, we removed the null values and analyzed the
Pearson correlation among the variables, dropping some of them to obtain a correlation
degree less than 80%. For the remaining categorical variables, we applied a one-hot encod-
ing. For BANK, we removed the null values, and the correlation analysis did not highlight
any correlation value higher than 75%. Thus, we did not drop any variable. No further
pre-processing was needed since the variables were all numerical. For SYNTH, instead, we
did not perform any kind of pre-processing since the dataset was synthetically generated.

After the pre-processing step, we split each dataset into two subsets: (i) 70% of the original
dataset (called Db) is used to train and test the black-box models; (ii) the remaining 30% of
the pre-processed data dataset (called Ds) is used for the learning process of the different
attacks, in particular for those attacks that require a minimum background knowledge in-
formation about the original data distribution durign the creation of the shadow models.

Table 1 Predictive performance of the models for ADULT, SYNTH and BANK dataset on the
test set. The results are validated with 3-fold cross-validation (we provide the mean and the
standard deviation between brackets). This table highlights the extremely good predictive
performance of TREPAN w.r.t. DT and RF, which is almost always the best model, except for
SYNTH. TREPAN was trained to exploit an enriched dataset, but in this case we tested the
predictive performance on the same test set of the black-boxes for comparison purposes.

Data Balance Metric DT RF TREPAN-RF NN TREPAN-NN

ADULT
C1 = 24%
C0 = 76%

F11 0.63 (0.02) 0.70 (0.02) 0.98 (0.00) 0.67 (0.02) 0.77 (0.02)
P1 0.60 (0.01) 0.69 (0.02) 0.99 (0.00) 0.69 (0.02) 0.82 (0.00)
R1 0.58 (0.05) 0.87 (0.03) 0.98 (0.01) 0.67 (0.03) 0.73 (0.01)

F10
0.90 (0.00) 0.86 (0.00) 0.99 (0.00) 0.89 (0.00) 0.99 (0.00)

P0 0.87 (0.01) 0.95 (0.00) 0.98 (0.00) 0.90 (0.00) 0.99 (0.00)
R0 0.92 (0.01) 0.80 (0.01) 0.99 (0.00) 0.89 (0.01) 0.98 (0.01)

SYNTH

Balance Metric DT RF TREPAN-RF NN TREPAN-NN

C2 = 33%

C1 = 33%

C0 = 33%

F12 0.77 (0.01) 0.99 (0.01) 0.95 (0.01) 1.00 (0.00) 0.72 (0.01)
P2 0.96 (0.01) 0.98 (0.01) 0.94 (0.00) 1.00 (0.00) 0.75 (0.00)
R2 0.96 (0.01) 1.00 (0.00) 0.98 (0.01) 0.99 (0.01) 0.70 (0.01)

F11
0.81 (0.02) 0.89 (0.01) 0.82 (0.01) 0.93 (0.01) 0.67 (0.01)

P1 0.83 (0.00) 0.88 (0.00) 0.84 (0.00) 0.94 (0.00) 0.64 (0.00)
R1 0.80 (0.00) 0.89 (0.01) 0.80 (0.01) 0.93 (0.01) 0.72 (0.01)

F10
0.80 (0.02) 0.88 (0.01) 0.82 (0.01) 0.93 (0.01) 0.89 (0.01)

P0 0.80 (0.00) 0.89 (0.00) 0.80 (0.00) 0.92 (0.00) 0.90 (0.00)
R0 0.82 (0.00) 0.88 (0.01) 0.86 (0.01) 0.94 (0.01) 0.88 (0.02)

BANK

Balance Metric DT RF TREPAN-RF NN TREPAN-NN

C1 = 8%
C0 = 92%

F11
0.35 (0.01) 0.77 (0.01) 0.99 (0.01) 0.78 (0.01) 0.84 (0.01)

P1 0.38 (0.01) 0.83 (0.01) 0.98 (0.02) 0.77 (0.01) 0.86 (0.00)
R1 0.34 (0.01) 0.75 (0.04) 0.99 (0.01) 0.76 (0.04) 0.82 (0.01)

F10 0.95 (0.02) 0.92 (0.01) 0.99 (0.01) 0.77 (0.01) 0.95 (0.01)
P0 0.95 (0.00) 0.91 (0.00) 0.99 (0.00) 0.78 (0.00) 0.96 (0.02)
R0 0.95 (0.00) 0.92 (0.01) 0.98 (0.01) 0.79 (0.01) 0.95 (0.01)

On each of the datasets selected we train different ML models: a Decision Tree, in the fol-
lowing referred to as DT, a simple, explainable by design method, which is exploited as a
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benchmarking; a Random Forest (RF), an ensemble method based on trees, able to achieve
extremely good prediction performance with tabular data; and a feedforward Neural Net-
work (NN). We chose these ML methods to examine the behaviour of our framework on
models that have completely different structural characteristics. The results of the training
of these ML models are reported in Table 1. Overall, the performance of the models is good,
with the exception of the DT, which suffers greatly from the imbalance between the classes,
especially high in the case of the BANK dataset. However, this result is in line with the
state-of-the-art, which shows that DT suffers greatly from noise and imbalanced data.

After training the ML models, we also train the respective explainers. Given the inherent
interpretability of DT, we do not need to explain them using a XAI method: we will only
exploit the DT to compare the results obtained from the application of other methods. For
the global case, we consider TREPAN, a tree-based explainer fitted on an enhanced version
of the original training dataset, labelled by the black-box model b. Therefore, we train a
TREPAN-RF model for explaining the RF, and a TREPAN-NN model for the NN. The perfor-
mance of the TREPAN model is reported in Table 1, from which it is possible to see that the
performance of the TREPAN models is extremely good for all the datasets. For the local case,
we select LORE, a post-hoc agnostic explainer that exploits a local DT surrogate model to
extract rules and counterfactual rules. In this case, we train one local surrogate model for
each record to explain. The average fidelity of these models is 0.97± 0.08.

5.2 Reveal evaluation

After training the black-box models and their explainers, we can now test the performance
of REVEAL. Following the experimental setting presented in [38], we consider two settings
for the fitting of the shadow models: the worst case scenario, called noise dataset from now
on, and the best case scenario, called random dataset. In the case of the noise dataset, we
assume the attacker has access to a noise version of a set of data from the same distribution
of the data exploited in the training set of the black-box. Technically, we add 10% of noise
to a piece of original dataset not exploited during the training of the black-box. For the
random case, instead, we assume the attacker has no knowledge about the dataset used for
training the black-box, apart of the number of variables of the original data. Therefore, the
attacker randomly generates and labels a dataset by querying the black-box. The choice
of these two types of datasets is due to the different settings they create: the noise dataset
assumes a favourable setting for the attacker, who, through some public information or
misappropriation of information, can obtain a piece of data from the same distribution as
the original one, albeit with some noise. This setting is unrealistic, but it is also where
the MIA allows greater privacy exposure. In addition, LABELONLY requires knowledge of
statistical information from the original data, so this setting is in line with the assumptions
of this attack. In the second setting, on the other hand, the attacker has no knowledge of
the data, and it is, therefore, a more realistic setting. At the same time, it is also relevant to
assess the performance of the attacks in this context, as having a privacy risk in this case is
much worse than the previous setting because it requires less knowledge on the part of the
attacker. In addition, it is also interesting to analyze the behaviour of the various attacks in
the random setting: based on the work in the literature, in this setting we expect to have a
decrease in privacy exposure for MIA and LABELONLY, while performance should remain
roughly similar for the ALOA case, which is specifically developed for this setting.
For each combination of black-box model, explainer and kind of dataset to generate the

shadow models (e.g. random or noise), we train MIA, LABELONLY and ALOA, both for the
global and the local explanations. Due to the different methodologies applied for the local
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and global case, in the following we present the results separately.

5.3 Results attacking the Global Explainers

Table 2 Results of the application of MIA, LABELONLY and ALOA with the setting noise for
training the shadow models, attacking global explainers. For each attack is reported the P
(Precision) and R (Recall) and F1 score (harmonic mean of P and R) for the IN class, which
is the class of the records correctly identified by the attacker. The values reported are the
mean over a 3 fold cross validation, with the standard deviation between brackets.

- MIA LABELONLY ALOA
Dataset Metric DT RF TREPAN-RF DT RF TREPAN-RF DT RF TREPAN-RF

ADULT

F1In 0.79 (0.01) 0.70 (0.01) 0.77 (0.01) 0.73 (0.01) 0.81 (0.01) 0.79 (0.00) 0.78 (0.01) 0.81 (0.01) 0.79 (0.00)
PIn 0.80 (0.02) 0.80 (0.03) 0.80 (0.00) 0.81 (0.01) 0.82 (0.00) 0.80 (0.00) 0.81 (0.01) 0.79 (0.00) 0.79 (0.00)
RIn 0.77 (0.01) 0.67 (0.01) 0.72 (0.02) 0.70 (0.02) 0.81 (0.01) 0.81 (0.03) 0.76 (0.02) 0.80 (0.01) 0.81 (0.03)
∆R 0.10 - 0.05 -0.09 - 0.00 -0.04 - 0.01

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.79 (0.01) 0.63 (0.02) 0.70 (0.01) 0.73 (0.01) 0.73 (0.02) 0.79 (0.01) 0.78 (0.01) 0.64 (0.02) 0.78 (0.01)
PIn 0.80 (0.02) 0.79 (0.00) 0.79 (0.03) 0.81 (0.01) 0.80 (0.00) 0.79 (0.03) 0.81 (0.01) 0.81 (0.00) 0.78 (0.03)
RIn 0.77 (0.01) 0.53 (0.03) 0.64 (0.00) 0.70 (0.02) 0.67 (0.03) 0.80 (0.00) 0.76 (0.02) 0.53 (0.03) 0.79 (0.00)
∆R 0.24 - 0.11 0.03 - 0.13 0.23 - 0.26

Metric DT RF TREPAN-RF DT RF TREPAN-RF DT RF TREPAN-RF

SYNTH

F1In 0.77 (0.01) 0.76 (0.01) 0.78 (0.00) 0.85 (0.01) 0.98 (0.01) 0.97 (0.00) 0.85 (0.01) 0.72 (0.01) 0.83 (0.00)
PIn 0.70 (0.01) 0.70 (0.00) 0.70 (0.00) 0.86 (0.01) 0.83 (0.00) 0.82 (0.00) 0.86 (0.01) 0.84 (0.00) 0.72 (0.00)
RIn 0.85 (0.02) 0.82 (0.01) 0.87 (0.03) 0.84 (0.02) 0.82 (0.01) 0.93 (0.03) 0.84 (0.02) 0.62 (0.01) 0.80 (0.03)
∆R 0.03 - 0.05 0.02 - 0.11 0.22 - 0.20

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.77 (0.01) 0.78 (0.02) 0.79 (0.01) 0.85 (0.01) 0.86 (0.02) 0.81 (0.01) 0.85 (0.01) 0.85 (0.02) 0.72 (0.01)
PIn 0.70 (0.01) 0.70 (0.00) 0.79 (0.03) 0.86 (0.01) 0.80 (0.00) 0.81 (0.03) 0.86 (0.01) 0.81 (0.00) 0.75 (0.03)
RIn 0.85 (0.02) 0.88 (0.03) 0.90 (0.00) 0.84 (0.02) 0.90 (0.03) 0.90 (0.00) 0.84 (0.02) 0.90 (0.03) 0.83 (0.00)
∆R 0.03 - 0.02 -0.06 - 0.00 -0.06 - -0.07

Metric DT RF TREPAN-RF DT RF TREPAN-RF DT RF TREPAN-RF

BANK

F1In 0.67 (0.01) 0.71 (0.03) 0.75 (0.03) 0.79 (0.01) 0.78 (0.01) 0.79 (0.00) 0.79 (0.01) 0.77 (0.01) 0.77 (0.00)
PIn 0.65 (0.02) 0.67 (0.02) 0.67 (0.00) 0.80 (0.01) 0.80 (0.00) 0.79 (0.00) 0.80 (0.01) 0.65 (0.00) 0.79 (0.00)
RIn 0.67 (0.01) 0.80 (0.02) 0.85 (0.00) 0.78 (0.02) 0.76 (0.01) 0.80 (0.03) 0.78 (0.02) 0.78 (0.01) 0.79 (0.03)
∆R -0.10 - 0.05 0.02 - 0.04 0.00 - 0.01

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.67 (0.01) 0.30 (0.00) 0.69 (0.00) 0.78 (0.01) 0.78 (0.02) 0.79 (0.01) 0.79 (0.01) 0.79 (0.02) 0.79 (0.01)
PIn 0.65 (0.02) 0.79 (0.01) 0.65 (0.00) 0.80 (0.01) 0.80 (0.00) 0.80 (0.03) 0.80 (0.01) 0.80 (0.00) 0.80 (0.03)
RIn 0.67 (0.01) 0.25 (0.02) 0.72 (0.02) 0.78 (0.02) 0.77 (0.03) 0.78 (0.00) 0.78 (0.02) 0.78 (0.03) 0.80 (0.00)
∆R 0.42 - 0.47 0.01 - 0.01 0.00 - 0.02

To evaluate REVEAL, we attack both the black-box models and their surrogate-based ex-
plainers employing three different attacks: MIA, LABELONLY and ALOA.

For training each MIA, we train 6 shadow models with the objective of mimicking the
black-boxes. The shadow models are trained employing the best set of hyper parameters
found using a grid search. All of the shadow models have an accuracy above 80%. Then,
from the shadow models, we extract the supervised training dataset Dtrain

a to train the
attack model. We remark that the MIA assumes the attack model as an ensemble model
composed of a ML model for each label L. Hence, in our case, we obtain two (or three for
the SYNTH dataset) RF attack models for each attack. Also in this case, for the different
attack models, we first search for the best set of hyperparameters, obtaining an accuracy
above 94% for all the models, when tested on a portion of test data Dtest

a .
For the LABELONLY and ALOA, we have just one shadow model, a RF as for the MIA,

with an accuracy above 80%. After fitting the shadow model, both models require the com-
putation of the robustness score, creating 1000 perturbations for each record, and the final
attack model is not a ML model but a thresholding model, adaptively selected depending
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Table 3 Results of the application of MIA, LABELONLY and ALOA with the setting random
for training the shadow models, attacking global explainers. For each attack is reported the
F1, Precision and Recall for the IN class, which is the class of the records correctly identified
by the attacker. The values reported are the mean over a 3 fold cross validation, with the
standard deviation between brackets.

- MIA LABELONLY ALOA
Dataset Metric DT RF TREPAN-RF DT RF TREPAN-RF DT RF TREPAN-RF

ADULT

F1In 0.72 (0.01) 0.49 (0.01) 0.78 (0.01) 0.30 (0.01) 0.46 (0.01) 0.78 (0.01) 0.77 (0.01) 0.82 (0.01) 0.77 (0.01)
PIn 0.78 (0.02) 0.77 (0.01) 0.79 (0.00) 0.78 (0.02) 0.77 (0.01) 0.79 (0.00) 0.82 (0.02) 0.78 (0.01) 0.77 (0.00)
RIn 0.66 (0.01) 0.36 (0.01) 0.77 (0.00) 0.55 (0.01) 0.35 (0.01) 0.80 (0.00) 0.76 (0.01) 0.78 (0.01) 0.82 (0.00)
∆R 0.30 - 0.41 0.20 - 0.50 0.02 - 0.04

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.72 (0.01) 0.43 (0.02) 0.77 (0.01) 0.30 (0.01) 0.33 (0.02) 0.67 (0.01) 0.77 (0.01) 0.63 (0.02) 0.77 (0.01)
PIn 0.78 (0.02) 0.70 (0.01) 0.78 (0.01) 0.78 (0.02) 0.77 (0.01) 0.68 (0.01) 0.82 (0.02) 0.81 (0.01) 0.77 (0.01)
RIn 0.66 (0.01) 0.32 (0.01) 0.76 (0.00) 0.55 (0.01) 0.52 (0.01) 0.66 (0.00) 0.76 (0.01) 0.52 (0.01) 0.77 (0.02)
∆R 0.33 - 0.44 0.03 - 0.14 0.24 - 0.25

Metric DT RF TREPAN-RF DT NN TREPAN-NN DT NN TREPAN-NN

SYNTH

F1In 0.80 (0.01) 0.70 (0.01) 0.77 (0.00) 0.79 (0.01) 0.80 (0.01) 0.80 (0.00) 0.86 (0.03) 0.71 (0.00) 0.83 (0.00)
PIn 0.71 (0.01) 0.85 (0.00) 0.70 (0.00) 0.80 (0.01) 0.78 (0.00) 0.79 (0.00) 0.84 (0.01) 0.82 (0.00) 0.73 (0.00)
RIn 0.98 (0.04) 0.78 (0.01) 0.84 (0.03) 0.78 (0.04) 0.76 (0.01) 0.80 (0.03) 0.83 (0.03) 0.70 (0.00) 0.80 (0.03)
∆R 0.20 - 0.06 0.02 - 0.04 0.13 - 0.10

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.80 (0.01) 0.45 (0.02) 0.80 (0.04) 0.79 (0.01) 0.82 (0.02) 0.73 (0.02) 0.86 (0.03) 0.84 (0.01) 0.72 (0.00)
PIn 0.71 (0.01) 0.69 (0.00) 0.70 (0.04) 0.80 (0.01) 0.80 (0.00) 0.68 (0.01) 0.84 (0.01) 0.80 (0.10) 0.72 (0.02)
RIn 0.98 (0.04) 0.33 (0.02) 0.90 (0.02) 0.78 (0.04) 0.77 (0.02) 0.77 (0.02) 0.83 (0.03) 0.89 (0.02) 0.86 (0.01)
∆R 0.65 - 0.57 0.01 - 0 0.06 - 0.03

Metric DT RF TREPAN-RF DT NN TREPAN-NN DT NN TREPAN-NN

BANK

F1In 0.70 (0.02) 0.68 (0.03) 0.73 (0.03) 0.72 (0.02) 0.70 (0.03) 0.72 (0.03) 0.76 (0.20) 0.85 (0.03) 0.76 (0.01)
PIn 0.65 (0.04) 0.71 (0.02) 0.64 (0.06) 0.79 (0.03) 0.65 (0.02) 0.76 (0.06) 0.77 (0.01) 0.64 (0.02) 0.79 (0.01)
RIn 0.70 (0.10) 0.65 (0.02) 0.85 (0.10) 0.76 (0.12) 0.73 (0.02) 0.75 (0.10) 0.75 (0.02) 0.78 (0.02) 0.80 (0.00)
∆R 0.05 - 0.20 0.03 - 0.02 0.03 - 0.02

Metric DT NN TREPAN-NN DT NN TREPAN-NN DT NN TREPAN-NN

F1In 0.70 (0.02) 0.27 (0.04) 0.65 (0.02) 0.72 (0.02) 0.47 (0.04) 0.57 (0.01) 0.76 (0.20) 0.77 (0.00) 0.79 (0.01)
PIn 0.65 (0.04) 0.70 (0.10) 0.65 (0.03) 0.79 (0.03) 0.65 (0.06) 0.66 (0.00) 0.77 (0.01) 0.10 (0.10) 0.78 (0.00)
RIn 0.70 (0.10) 0.23 (0.02) 0.69 (0.10) 0.76 (0.12) 0.46 (0.00) 0.61 (0.01) 0.75 (0.02) 0.74 (0.11) 0.78 (0.09)
∆R 0.47 - 0.46 0.30 - 0.20 0.01 - 0.04

on the data in input.
Regarding the global explainers, the results are reported in Table 2 and in Table 3, respec-

tively for the noise dataset and the random dataset. In the tables are reported F1, P and R
for the IN class, which is the most important class for this setting, since it represents the
users that are re-identified. Most importantly, we report the ∆R(·), which is our evaluation
metric for testing the change in privacy exposure. This metric reports the difference be-
tween the recall of the black-box models w.r.t. the DT, as well as the difference between the
recall of the black-box models with respect to the corresponding TREPAN models. In this
setting the recall of the IN class is particularly important since it describes how many train-
ing records we can reconstruct. A positive value for ∆R(·) means that the privacy exposure
of the DT or of the TREPAN model is higher w.r.t. the black-box models.

For the MIA attack, we can notice that we have a higher privacy exposure for the DT and
the TREPAN models w.r.t. the black-boxes in both of the settings, i.e. noise and random.
The only exception to this trend is ∆R(DT − RF) for BANK, in which the RF has a higher
privacy exposure w.r.t. the DT, even if for a small amount. The negative values for this
metric may be due to the poorer performance of the DT in this setting which make also the
attack less robust. Regarding the privacy attacks against the black-boxes, it is possible to
see that overall in the random setting the privacy treats are smaller w.r.t. the noise one. In
particular, the privacy exposure of NN in the random case is insignificant (the highest recall
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in this setting for NN is 0.33 for SYNTH).
The same trends presented for MIA are also present for LABELONLY, especially for the

noise setting, even if the ∆R(·) show lower values w.r.t. the MIA. This result is due to
the fact that this attack is better in attacking the black-box models w.r.t. MIA, hence, there
is already a higher privacy exposure when attacking the black-boxes. As a consequence,
when comparing the difference in privacy exposure between black-boxes and explainers,
we find a smaller difference. Regarding the random case, LABELONLY obtains a higher
privacy exposure w.r.t. MIA, highlighting that this attack is more robust and hence able to
succeed even in more difficult settings. However, in the random case, LABELONLY shows a
decrease in performance w.r.t. the noise case. In particular, LABELONLY can attack, with a
worrying privacy exposure, both the NN and the RF for the SYNTH dataset. The trend of a
higher privacy exposure for the black-boxes in LABELONLY w.r.t. MIA can be seen also for
the RF of BANK and for the NN of ADULT, even if in a smaller way.

The performance of ALOA are similar to the LABELONLY for the noise case. We can no-
tice similar results also in the case of the ∆R(·): the values are lower w.r.t. MIA, but all
the attacks show a privacy exposure, both for the explainers and the black-boxes, the firsts
higher than the latter. For the random setting, instead, ALOA shows a higher privacy ex-
posure w.r.t LABELONLY and MIA. This result was expected due to the procedure of the
attack. In fact, ALOA does not require any kind of background knowledge about the orig-
inal training dataset, not even the statistics of it. Therefore, having privacy exposure with
this attack highlights an even more dangerous setting since the attacker can perform it with
the only assumption of knowing the shape of the input data, which is public information
for on-demand services.

Figure 2 reports the Critical Difference Plot, showing the overall ranking of the three dif-
ferent attacks against global surrogate-based explainers and their black-boxes, both in the
noise and random settings. From this plot, we can observe that there is no statistical differ-
ence among the attacks, showing an overall threatening setting for the privacy of the peo-
ple in the training datasets. Regarding the ranking, ALOA against the TREPAN models is
the one which exposes the highest privacy risk, followed by MIA and LABELONLY against
TREPAN. However, the three methods against the global explainers have close values in
the ranking, with a clear separation between them and the attacks against the black-boxes.
In fact, all the attacks against the black-boxes are less powerful w.r.t. the attacks against
the explainers, even if the level of privacy exposure remains high. For the attacks against
the black-boxes, the ranking is: ALOA, LABELONLY and MIA, but the last one is the lower
rank, significantly separated from ALOA and LABELONLY.

5.4 Results attacking the Local Explainers

In this setting we attack the local surrogate explainers. Differently from the global case, the
local surrogate is a simple ML model which describes the behaviour of the black-box model
close to the record under analysis and not the overall behaviour, as in the case of the global
explainers. For this reason, we apply a different procedure, presented in Section 4.1.2. In
this setting, the procedure works as follows: firstly, in the Attack training procedure, we fit
an attack for each surrogate model created (E = {e1, e2, ..., en}) together with the attack
against the black-box model b, obtaining AE(·), Ab(·). Then, in the Attack application proce-
dure, we consider the resulting attack models as part of an ensemble classification method,
having AE(·) as an ensemble of different attacks. The last procedure, Attack evaluation, can
be instantiated in different ways, depending on the attack considered. In 4.1, we presented
the different instantiation of REVEAL in case the attack produces the prediction probabili-
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Table 4 Results of the application of three privacy attacks (MIA, ALOA, LABELONLY) with
the setting noise for training the shadow models, attacking the explainer locally.

- MIA LABELONLY ALOA
Dataset Metric RF NN RF NN RF NN

ADULT

F1In 0.60 (0.00) 0.43 (0.02) 0.77 (0.23) 0.28 (0.10) 0.74 (0.00) 0.45 (0.02)
PIn 0.54 (0.02) 0.30 (0.00) 0.78 (0.78) 0.73 (0.12) 0.79 (0.02) 0.51 (0.06)
RIn 0.68 (0.02) 0.70 (0.02) 0.75 (0.21) 0.30 (0.10) 0.72 (0.02) 0.40 (0.03)
∆RIn 0.01 0.17 -0.06 (0.01) -0.37 (0.04) -0.08 (0.01) -0.13 (0.04)

Metric RF NN RF NN RF NN

SYNTH

F1In 0.73 (0.03) 0.70 (0.02) 0.72 (0.02) 0.75 (0.07) 0.73 (0.00) 0.62 (0.00)
PIn 0.71 (0.01) 0.66 (0.00) 0.68 (0.03) 0.65 (0.08) 0.70 (0.01) 0.60 (0.01)
RIn 0.84 (0.02) 0.70 (0.00) 0.78 (0.01) 0.82 (0.02) 0.76 (0.02) 0.65 (0.00)
∆RIn 0.02 0.18 -0.04 0.08 -0.10 (0.01) -0.25 (0.04)

Metric RF NN RF NN RF NN

BANK

F1In 0.77 (0.01) 0.69 (0.01) 0.58 (0.02) 0.50 (0.00) 0.65 (0.01) 0.43 (0.01)
PIn 0.64 (0.02) 0.68 (0.03) 0.66 (0.05) 0.64 (0.01) 0.58 (0.02) 0.47 (0.00)
RIn 0.83 (0.00) 0.69 (0.00) 0.52 (0.00) 0.48 (0.05) 0.71 (0.04) 0.58 (0.09)
∆RIn 0.03 0.44 -0.24 0.29 -0.07 (0.01) -0.20 (0.04)

Table 5 Results of the application of three privacy attacks (MIA, ALOA, LABELONLY) with
the setting rand for training the shadow models, attacking the explainer locally.

- MIA LABELONLY ALOA
MIA Metric RF NN RF NN RF NN

ADULT

F1In 0.41 (0.00) 0.46 (0.03) 0.67 (0.23) 0.34 (0.10) 0.69 (0.02) 0.42 (0.05)
PIn 0.30 (0.00) 0.70 (0.01) 0.77 (0.25) 0.73 (0.12) 0.75 (0.02) 0.50 (0.01)
RIn 0.64 (0.01) 0.35 (0.04) 0.60 (0.21) 0.20 (0.10) 0.66 (0.01) 0.38 (0.01)
∆RIn 0.28 0.03 +0.25 -0.22 0.12 -0.02

Metric RF NN RF NN RF NN

SYNTH

F1In 0.64 (0.03) 0.38 (0.00) 0.71 (0.02) 0.63 (0.01) 0.70 (0.01) 0.59 (0.03)
PIn 0.60 (0.01) 0.35 (0.04) 0.65 (0.04) 0.70 (0.01) 0.71 (0.04) 0.60 (0.03)
RIn 0.71 (0.02) 0.38 (0.01) 0.76 (0.02) 0.60 (0.00) 0.70 (0.00) 0.60 (0.01)
∆RIn -0.07 +0.05 0.00 -0.17 0.00 -0.10

Metric RF NN RF NN RF NN

BANK

F1In 0.16 (0.05) 0.46 (0.03) 0.52 (0.03) 0.47 (0.00) 0.68 (0.04) 0.45 (0.04)
PIn 0.27 (0.02) 0.34 (0.09) 0.65 (0.20) 0.60 (0.00) 0.65 (0.00) 0.36 (0.00)
RIn 0.12 (0.01) 0.90 (0.01) 0.50 (0.00) 0.44 (0.01) 0.69 (0.02) 0.60 (0.00)
∆RIn -0.53 -0.13 -0.23 -0.02 -0.09 -0.14
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ties vector or not. In these experiments, we use the approach which exploits the probability
vectors for MIA, while we exploit the other approach for LABELONLY and ALOA.

For the experiments conducted, for each dataset considered we select a set of records
to explain from the test set exploiting a K-means clustering procedure, with k being the
best value for the dataset under analysis. The choice of k is done by exploiting the elbow
method. Due to computational limitations, we explain 3 records for each quantile of each
cluster. Regarding the training of the local surrogate models obtained with LORE, the pro-
cedure requires synthetically generating a local neighbourhood around the record x under
analysis and then fitting a local surrogate DT on the generated neighbours. Therefore, there
are different parameters to set. In particular, for this setting, the kind of generation of
the neighbourhood and the number of synthetic records to create are important. We con-
ducted a search on these variables, obtaining similar results when considering the genetic
and random generation, genetic and probabilities generation and the counterfactual first search
generation. The other kinds of generations, such as the random one, show lower perfor-
mance. Regarding the number of synthetic records to create, we use 10000. Similarly to the
case of the global explainers, for each local surrogate model we train a MIA attack, with
6 shadow models, with accuracy above 80%. Also in this case, the models created for the
attack are all RF. The same setting is applied to LABELONLY and ALOA.

The results of the attacks against the local explainers are reported in Table 4 and in 5, re-
spectively for the noise dataset and the random dataset. In this setting we observe a lower
privacy exposure of the explainers w.r.t. the global setting. This result can be observed by
analyzing the values of the ∆R(·): while in the global case we mostly have positive values,
highlighting an increase in privacy exposure when attacking the explainers instead of the
black-boxes, in the local case the values are closer to zero, with some negative values, im-
plying that attacking the black-boxes produces a higher privacy exposure than attacking
the local explainers. Regarding the noise case, MIA produces the highest privacy exposure,
with positive ∆R(·) for all the configurations considered. However, the setting changes in
the random case, having a lower privacy exposure for MIA and LABELONLY. ALOA, in-
stead, gives similar results both for the noise and random case, highlighting once again that
this attack is the more robust among the three. This result can also be seen in Figure 3,
which presented a Critical Difference plot for the Recall of the various attacks performed
against the local explainers and their black-boxes. Also, in this case, as in the global case,
there is no significant statistical difference among the attacks presented. However, in this
plot we can observe that ALOA and LABELONLY against the black-boxes are the highest in
the rank, showing a higher privacy exposure w.r.t. ALOA against LORE and MIA against
LORE, which is in the fourth position, equally matched and significantly separated from the
first two. MIA ranks the lowest among attacks targeting black-box models, while LABE-
LONLY ranks the lowest among attacks on local explanations. Both show a clear distinction
from the top quartile of the rankings.

Analysis on the number of records explained For the local setting the attack model AE is
an ensemble of multiple attacks, one against each of the local surrogate models created ex-
ploiting LORE. To validate REVEAL, we conducted a set of experiments in which we created
a local surrogate model for a set of records selected based on a K-means clustering proce-
dure, explaining 3 records for each quantile of each cluster. In practice, our intuition is that
the privacy attack will yield better results as the number of records explained increases.
This is because explaining more records implies having more local surrogates, which thus
better describes the data space under analysis. Consequently, attacking more local models
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Figure 2: Critical difference plot for the Nemenyi test with α = 0.05 for the attacks performed on
the global explainers (TREPAN) and their associated black-boxes. The reported values result from the
ranking procedure and indicate that ALOA, MIA, and LABELONLY against TREPAN show minimal
differences among themselves. In contrast, the attacks targeting the black-boxes rank lower and are
clearly separated from the top three.

Figure 3: Critical difference plot for Nemenyi test with α = 0.05 for the attacks performed on the local
explainers and their black-boxes. The values reported results from the ranking procedure. ALOA and
MIA against the black-boxes are the highest in the rank, posing a higher privacy threat. The ranking
values show a clear separation between them and the other attacks.

that better describe the space under analysis should also improve the ensemble method of
attacks. To validate this insight, we increase the number of records explained for each clus-
ter. In particular, we consider ALOA with the noise dataset for SYNTH, which is the setting
that shows a higher privacy exposure, and increase the number of elements for each of the
datasets considered, ranging from 40 records up to 120 records. The results are reported in
Figure 4. From the plot, it is possible to observe that with a small number of records, the
performance of the attack is low, highlighting that with few local explanations, the risk of
privacy is low. This result aligns with our expectations, as limited local surrogate availabil-
ity cannot represent all facets of the data space under analysis. However, the increase in
the number of records explained also leads to an increase in privacy exposure, reaching a
plateau starting from 80 records explained for all the datasets, i.e., starting from 80 records,
the increase in the number of records do not show an increase in privacy exposure. This
behavior in the privacy risk analysis is a finding already reported in literature [30] in the
setting of assessing the privacy of the data.

6 Conclusion

In this paper we propose REVEAL, a framework for assessing the privacy exposure of the
black-box models and their surrogate-based explainers, being them local or global. The
method proposed is generic and can be exploited for every kind of black-box model, ev-
ery surrogate-based explainer and with different kinds of privacy attacks. The analysis
conducted shows that attacking the privacy of the explainers, being local or global, gives
rise to privacy exposures. Depending on the privacy attack considered, we have different
levels of privacy risks, rising to particularly concerning situations with ALOA, a privacy
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Figure 4: Results of ALOA increasing the number of records explained for the local setting. Starting
from 80 records explained all the datasets reach a plateau in the privacy exposure.

attack that has very little assumption of knowledge on the part of the attacker and yet still
manages to achieve good results in terms of privacy breaches. However, the global ex-
plainers show higher privacy exposure with respect to their black-boxes. At the same time,
this is not the case for the local explainers, which show the same or lower level of privacy
exposure as their corresponding black-boxes.

In this paper we focused our analysis on tabular data due to the limited availability of
surrogate-based explainers for more complex data types. However, as a future work, we
plan to extend our study to more complex data, such as time-series, for which some ex-
plainable AI methods exploit surrogate models (e.g., LASTS [41]). Applying our frame-
work in this context will also require to design and develop privacy attacks specifically
tailored to machine learning models for such type of data, which inherently models tem-
poral dependency between a series of observations.

The results obtained evaluating REVEAL expose a concerning scenario in which user pri-
vacy is at significant risk, particularly when global explainers are employed. Our findings
highlight the delicate balance between explainability and privacy that must be carefully
managed in the development of Artificial Intelligence systems. In future work, we aim to
explore the generation of explanations that protect user privacy. Recently, there has been
growing interest in privacy-protected explanations, as discussed in [4]. For this reason, we
plan to assess the privacy implications of differentially private explanations, such as SHAP
values, by analyzing both cases where privacy protection methodologies are applied to the
data or to the training of the machine learning models to explain.
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