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Abstract. Confidential business data needs protection against disclosure. Often this data is protected
by releasing sample means, variances and higher power moments. Motivated by statistical disclo-
sure control obligations and the need to publish business data safely, we explain how calculating
the Lehmer mean from released power moments can lead to the unwanted disclosure of the largest
data value. We explain how similar disclosure can apply to smaller data values and provide an ap-
proximate solution to the Truncated Moment Problem. We briefly discuss the Gini mean and the
relationship between sample central and raw moments.
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1 Introduction

The paper is motivated by two related problems. The first is the obligation on national statistical
offices to publish data in a way that protects the confidentiality of respondents. The second is the
need of businesses to release data in a similarly safe manner, for open-source statistical analysis, for
example. Often these data sets are protected from the disclosure of sensitive values by releasing
sample means, variances and higher power moments.

For positive data, the Lehmer mean is a generalized power mean that can be computed from re-
leased consecutive power moments. The Lehmer mean tends upwards to the largest data value as
the power increases. The Lehmer mean therefore provides an approximation of the largest data value,
the quality of which can be controlled by increasing the power. This means that, if too many power
moments are released, there is a risk that the largest data value can be disclosed. The second largest,
and smaller data values, can be similarly at risk. We illustrate this using project revenue data from
AECOM, an infrastructure consulting firm.

The AECOM data set comprise 8, 912 project revenues from an AECOM business line. Subsets of this
data set are representative of data that AECOM shares with third parties. The sample mean revenue
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is 49, 500 units (3 significant figures); we do not provide the currency because of commercial confi-
dentiality. The sample median is 35, 700, the standard deviation is 48, 400 and the interquartile range
is 72, 100, while the sample skewness and kurtosis are 1.1 and 3.7, indicating considerable asymme-
try and peakedness in the project revenue distribution. The sample mean, standard deviation, sample
skewness and kurtosis are all commonly released summary statistics from which the first four power
moments can be obtained.

To put our work in a legal context, we briefly discuss guidance from the UK and the European Union
(EU). The EU’s statistical office Eurostat identifies that in the EU there are two data protection frame-
works; see [1]. First, the General Data Protection Framework (GDPR) applies to personal data. The
second framework concerns ‘the protection of data collected for statistical purposes, also called sta-
tistical confidentiality’, and is ‘a fundamental principle of official statistics’. This statistical confiden-
tiality means that ‘rules and measures must be taken to prevent disclosure’. One of the examples
given by Eurostat ([1], on their web-page ‘Statistical confidentiality and personal data protection’) of
data to which the second framework applies is ‘the aggregated turnover of a specific type of com-
pany located in a specific region’. The UK Office for National Statistics ([2]) discusses releasing data
from both business and social surveys in accordance with the ‘Code of Practice for Official Statistics’;
see [3].

Our work is relevant to statistical disclosure control (SDC), the science of protecting sensitive in-
formation in released data. In their book-length summary, [4] describe SDC as ‘the set of methods
to reduce the risk of disclosing information on individuals, businesses or other organisations. SDC
methods minimise the risk of disclosure to an acceptable level while releasing as much information as
possible’ (their Section 1.1.2). [4] discuss how SDC methods must preserve statistical properties of the
data set being protected. These preserved properties include: means, totals, (higher or lower order)
moments, variances and the structure of the data. Our work helps us to understand the disclosure
risks of SDC techniques where the preserved properties are moments or their equivalents.

There has been an enormous output related to SDC including, as a small set of theoretical and prac-
tical examples, [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. [18] provides a recent overview of disclo-
sure risks and their quantification. She also discusses data utility and common statistical disclosure
limitation methods, partially in the context of remote analysis servers. [18] mentions the problems
associated with the release of maximum and minimum values, and percentiles. Similar issues are
also discussed in [17], for example. [19] discuss SDC in microdata from social surveys released by
statistical agencies, mentioning differential privacy, a formal method of privacy protection described
in [20] for frequency tables. Our methods would also be useful in other contexts, such as in health
settings, where deductive disclosure might lead to heavy fines, although we do not discuss these in
detail.

Finally, our work also makes a contribution to the Truncated Moment Problem (TMP). The TMP
concerns estimating data values from released power moments and is therefore related to SDC. [21]
seems to have been the first to consider – 150 years ago – the TMP, which can be regarded as a
finite dimensional version of the Hausdorff Moment Problem. The TMP is important when there
is no access to the original data, but sample moments are available. The TMP has a large range
of applications including physics, computer science, geography, probability, environmental science,
engineering including chemical engineering, and geo-physics; see [22]. One approach to the TMP is
to assume a simple distribution shape which is then fitted using the method of moments; see [23] and
[24]. For other approaches related to reconstructing a distribution from its moments, see [25], [9] and
[26]. The ability of our method to approximate all data values provides an applied solution to the
TMP.

1.1 Overview and Structure of the Paper

The essence of our work is the following. Companies and other organisations often perform SDC
by releasing power moments. We can approximate the largest values of a data set from released
power moments using Lehmer means. Consequently, sensitive values thought to be protected may
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not actually be so. We therefore discuss the degree to which released moments can disclose data
values.

We believe that the Lehmer mean deserves to be better known and in Section 2 we present some of its
key properties that we will use to approximate the largest data values. We describe in detail how to
approximate the largest and second largest data values in Section 3, where we also discuss how we
can iterate our method to approximate all data values. In Section 4 we apply these approximations to
the AECOM project revenue data and assess their performance in the context of data disclosure from
released moments. As the protection of multivariate data is often of interest in official statistics, we
also discuss the extension of our approach to bivariate data using a simulation study. Brief conclu-
sions and suggestions for further work are given in Section 5. The relationship between central and
raw moments, together with proofs of Lehmer mean properties are presented in appendices.

2 Moments, Power Means, and the Gini and Lehmer Means

The Gini and Lehmer means are examples of generalized power means. The Lehmer mean seems to
have been introduced by [27]. Before discussing these means, we need some definitions. The p-th raw
moment of a continuous random variable X with probability density function f is given by:

µp = E[Xp] =

∫

xp f(x) dx,

where the integral is over all possible values of X .

The p-th sample raw moment for a random sample x1, . . . , xn of n data points is:

Mp;n =
1

n

n
∑

k=1

xp
k. (1)

M0;n = 1 and M1;n =
∑n

k=1 xk/n = x̄ is the sample mean. Mp;n is an unbiased estimator of µp;

see [28]. The quantity M
1/p
p;n is referred to as a power mean.

The p-th sample central moment ([29]) is defined as

cp;n =
1

n

n
∑

k=1

(xk − x̄)p.

c0;n = 1, c1;n = 0 and c2;n =
∑n

k=1(xk − x̄)2/n is one version of the sample variance. n c2;n/(n− 1)
provides an unbiased estimator of Var[X] = E[(X − E[X])2]. Raw and central moments are related,
as recalled in Appendix A. This relationship means that it does not matter whether sample central
or raw moments are released because one can be obtained from the other. For example, one well
known relationship is s2x = c2;n = M2;n − x̄2, where sx is a sample standard deviation. Central

moments can be standardized leading to the sample skewness c3;n/s
3
x = c3;n/c

3/2
2;n and the sample kurtosis

c4;n/s
4
x = c4;n/c

2
2;n. Because the sample variance, skewness and kurtosis are defined in terms of

central moments, they are invariant to shifts applied to all the data.

Let x1, . . . , xn > 0 be a positive data set, and assume that x1, . . . , xn are not all equal. We define the
Gini mean as:

Gr,s;n =

(

Mr+s;n

Ms;n

) 1
r

=

(
∑n

k=1 x
r+s
k

∑n
k=1 x

s
k

)

1
r

, r 6= 0.

Let r = p and s = 0, then Gp,0;n = M
1/p
p;n , a power mean. Hence, the Gini mean is an example of a

generalized power mean.

The Lehmer mean Lp;n is a special case of the Gini mean with r = 1 and s = p− 1:

Lp;n = G1,p−1;n =
Mp;n

Mp−1;n
=

∑n
k=1 x

p
k

∑n
k=1 x

p−1
k

,
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and so is also an example of a generalized power mean. It is easy to see that L1;n = x̄. Similarly,
L0;n = n/

∑n
k=1 (1/xk) is the harmonic mean. Calculation of the Lehmer mean requires the con-

secutive pair of moments (Mp;n,Mp−1;n); the Gini mean may be computed from a non-consecutive
pair.

It is convenient to re-define some of our above quantities in terms of ordered data points x(1) ≤
x(2) ≤ · · · ≤ x(n). To do this, we let Sp;n = xp

(1) + · · ·+ xp
(n−1) + xp

(n) be the sum of the ordered data

values and re-define Mp;n =
∑n

k=1 x(k)/n. Then, Lp;n = Mp;n/Mp−1;n = Sp;n/Sp−1;n.

We now state two properties of the Lehmer mean on which we base our approximation of x(n):

Property 1 Lp;n is a monotonically increasing function of p.

Property 2 Lp;n ր x(n) as p ր ∞, meaning that the Lehmer mean tends upwards to the largest data
value as p increases.

These properties are proved in Appendix B. From them it follows that Lp;n ≤ x(n).

A proof similar to that for Property 2 allows us to establish that Gr,s;n ր x(n) as r, s ր ∞; see also
[30]. In this paper, we concentrate on the special case of Lp;n because it is easy to control through its
single parameter p. For very highly positively skewed data sets the arithmetic mean x̄ = L1;n may
reflect x(n), but approximations provided by Lp;n would offer greater control through the choice of
p.

3 Approximating the Largest Value x(n) and the Second Largest

Value x(n−1)

Because Lp;n ր x(n) as p ր ∞, x̂
(p)

(n) = Lp;n can be used to approximate x(n), with the accuracy of
this approximation increasing as p increases. Released consecutive moments can be used to calculate

x̂
(p)
(n), which can therefore lead to the unwanted disclosure of x(n). We quantify this disclosure risk by

the relative error when approximating x(n) by x̂
(p)
(n),

(

x(n) − x̂
(p)
(n)

)

/x(n), expressed as a percentage;

this quantity is always non-negative because x(n) ≥ x̂
(p)
(n). The smaller this error, the greater is the

risk of the unwanted disclosure of x(n). [31] used this quantity to quantify the risks of an ‘intruder’
learning the largest and second largest values in the context of business data.

Similarly, we can approximate and therefore assess the disclosure risk for the second largest value x(n−1)

using Lp′;n−1 = Sp′;n−1/Sp′−1;n−1, where the reduced sums Sp′;n−1 and Sp′−1;n−1 can be approxi-
mated as

Ŝp′;n−1 = Sp′;n − (x̂(n))
p′ = Sp′;n − (Lp;n)

p′ and Ŝp′−1;n−1 = Sp′−1;n − (Lp;n)
p′−1.

If therefore follows that

x(n−1) ≈ Lp′;n−1 =
Sp′;n−1

Sp′−1;n−1

≈
Sp′;n − (Lp;n)

p′

Sp′−1;n − (Lp,n)p
′−1

,

yielding the following approximation x̂
(p,p′)

(n−1)
to x(n−1):

x̂
(p,p′)
(n−1) =

Sp′;n − (Lp;n)
p′

Sp′−1;n − (Lp,n)p
′−1

. (2)

Note that two pairs of power moments (Mp;n,Mp−1;n) and (Mp′;n,Mp′−1;n) are needed to find

x̂
(p,p′)

(n−1). It can be shown that, if p′ = p, then x̂
(p,p)

(n−1) = Lp,n = x̂(n), which is not helpful, meaning that

the case p′ = p should be avoided.
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A heuristic argument outlined in Appendix C and results obtained from the AECOM business rev-

enue data in Section 4 suggest that, if p′ < p, then x̂
(p,p′)
(n−1) → x(n−1) as p, p′ → ∞. We quantify the er-

ror and hence the disclosure risk when approximating x(n−1) by x̂
(p,p′)

(n−1) using
(

x(n−1) − x̂
(p,p′)

(n−1)

)

/x(n−1),

expressed as a percentage. If x̂
(p,p′)

(n−1) > x̂
(p)

(n), as often happens when p′ > p, then x̂
(p,p′)

(n−1) is set to x̂
(p)

(n).

This is because x(n−1) ≤ x(n) by definition, and so having x̂
(p,p′)
(n−1) > x̂

(p)
(n) is just an artifact of estima-

tion error.

If the data are grouped in the sense that values are repeated, then, for large p, x̂
(p)
(n) will be closer to

x(n) the further x(n) is from x(n−1). If data are based on intervals, then similar considerations apply
if we work with interval midpoints.

3.1 An Alternative Way of Approximating x(n−1)

An alternative approximation for x̂(n−1), similar to (2) but involving only one pair of consecutive
power moments takes the form

x̂
(p)
(n−1) =

Sp;n − (L∗
p;n)

p

Sp−1;n − (L∗
p;n)p−1

, (3)

in which L∗
p;n is a rounded up version of the Lehmer mean Lp;n; we round up because Lp;n ր x(n).

3.2 Recovering All Data Values

In both the above cases, our approximation of x(n−1) is based on an approximation of x(n). We can
therefore iterate to approximate all data values to some degree of accuracy. As an example, using the

approximation x̂
(p)
(n−1) given in (3), our approximation of x(n−2) would be

x̂
(p)
(n−2) =

Sp;n −
(

L∗
p;n

)p
−
(

x̂
(p)
(n−1)

)p

Sp−1;n −
(

L∗
p,n

)p−1
−
(

x̂
(p)
(n−1)

)p−1
. (4)

This method provides an approximate solution to the TMP. In the context of SDC, it allows us to
understand the risks of unwanted disclosure of smaller data values given release of higher-order
moments.

4 Results: Disclosure Risk for Real Business Data

As is often the case, the largest values of the AECOM project revenues data are particularly sensitive
because of contractual confidentiality. We therefore use the AECOM data to assess the error associ-

ated with the approximations x̂
(p)
(n) = Lp,n and x̂

(p,p′)
(n−1), and hence to understand the risk of disclosure

for x(n) and x(n−1). We randomly generated data sets of size n = 20 by sampling with replacement.
We choose n = 20 as an example of the size of data that AECOM shares with third parties.

Figure 1 (a) shows, for values of p from 1 to 20, the mean of the percentage relative error 100(x(n) −

x̂
(p)

(n)
)/x(n)% associated with using x̂

(p)

(n)
to approximate x(n) over 250 randomly generated data sets.

This error tends down towards 0 as p increases, in accordance with Property 2. Hence, the disclosure
risk increases as p increases.

Figure 1 (b) presents, for each power pair (p, p′) in a grid with sides from 1 to 20, the mean percentage

absolute relative error 100
∣

∣

∣
x(n−1) − x̂

(p,p′)
(n−1)

∣

∣

∣
/x(n−1)% over 250 randomly generated data sets, the

absolute value being taken so that negative errors do not cancel out positive ones. We see that x̂
(p,p′)
(n−1)
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Figure 1: (a) Mean percentage relative error when x̂
(p)
(n) approximates x(n). (b) Mean ab-

solute percentage relative error when x̂
(p,p′)
(n−1) approximates x(n−1). (c) Percentage relative

errors for 250 data sets for x̂
(3,4)
(n−1). (d) Percentage relative errors for 250 data sets for x̂

(14,8)
(n−1).
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approximates x(n−1) well when p′ < p (below the positive diagonal). This is further explored in
Figure 1 (c) and (d). Figure 1 (c) quantifies the approximation error when (p, p′) = (3, 4) (p′ > p), by
showing a histogram of the 250 relative percentage errors. Figure 1 (d), which is for (p, p′) = (14, 8)
(p′ < p), shows smaller errors, as the heuristic argument outlined in Appendix C suggests. The
higher is the approximation error, the lower is the disclosure risk for x(n) and x(n−1). Therefore,
plots similar to Figure 1 can be used to suggest values of p and p′ and therefore the power moments
that can be released, whilst maintaining a required level of disclosure protection for x(n) and x(n−1).

4.1 Results for our Alternative Way of Approximating x(n−1)

Our alternative way of approximating x(n−1) described in Section 3.1 depends on only one power

p and yields x̂
(p)
(n−1) given in (3). To illustrate the performance of x̂

(p)
(n−1), we rounded the AECOM

project revenue data to the nearest 1, 000 units. Hence, we set L∗
p,n to Lp,n rounded up to the nearest

1, 000.

Figure 2 (a) shows the mean percentage absolutely relative errors

100
∣

∣

∣
x(n) − x̂

(p=4)
(n)

∣

∣

∣
/ x(n)% and 100

∣

∣

∣
x(n−1) − x̂

(p=4)
(n−1)

∣

∣

∣
/ x(n−1)%,

when x̂
(p)
(n) and x̂

(p)
(n−1) approximate x(n) and x(n−1), over the 250 randomly generated data sets. It can

be seen that x̂
(p)

(n−1)
performs better than x̂

(p)

(n)
for low values of the power p. This error measure be-

come small as p get large for both approximations. Figure 2 (b) and (c) examine this in greater detail

for p = 4 by showing histograms of the 250 percentage relative errors 100
(

x(n) − x̂
(p=4)
(n)

)

/ x(n)%

and 100
(

x(n−1) − x̂
(p=4)
(n−1)

)

/ x(n−1)%. As expected, the 100
(

x(n) − x̂
(p=4)
(n)

)

/ x(n)% values are al-

ways positive. The values of 100
(

x(n−1) − x̂
(p=4)

(n−1)

)

/ x(n−1)% are generally lower, but there is quite

a long tail corresponding to over-estimation. Again, plots similar to Figure 2 can be used to suggest
the value of p and therefore the power moments that can be released, whilst maintaining a required
level of disclosure protection.

4.2 Approximating All Data Values

As mentioned in Section 3.2, we can use an iterative approach to approximate successively smaller
values of a positive data set. An example of this for x(n−2) was given in (4). In certain circumstances
and using sufficiently large values of p, it may be possible to recover the whole data set. We explored
this using a simulation study. We generated 250 random samples x1, . . . , xn of size n from a Poisson
distribution with mean µ: xi ∼ Po(µ), independently, i = 1, . . . , n. Because the data values are inte-
ger, we used rounding up to the nearest integer in our approximations. We then found the smallest
value of p needed to reconstruct x1, . . . , xn. Our results are shown for sample sizes n = 1, . . . , 100
and for µ = 10, 25, 50 and 75 in Figure 3, which was produced using the ggplot2 R ([32]) package
of [33]. In Figure 3 we plot the points (n, smallest p) and we add smoothers (blue curves) to show the
trends. We have also added the line 2× smallest p = n (black lines) to each panel of Figure 3 because
a pair of moments (Mp;n,Mp−1;n) is required to find Lp;n. Values above this line require more higher
order moments than the sample size n. When the Poisson mean µ is small, we can perform data set
recovery using small values of p for quite small sample sizes. When µ is larger, data set recovery
requires considerably higher values of p.

4.3 Bivariate Data

Following the suggestion of a reviewer, we now briefly discuss an extension of our largest value
approximation method to bivariate data. We simulated data from a bivariate Student t copula (Ex
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Figure 2: (a) The dependence on the power p of the mean percentage absolute rela-

tive error when x̂
(p)
(n) and x̂

(p)
(n−1) approximate x(n) and x(n−1) over 250 randomly gener-

ated data sets. (b) Values of the percentage relative errors 100
(

x(n) − x̂
(p=4)
(n)

)

/ x(n)%

from 250 randomly generated data sets. (c) Values of the percentage relative errors

100
(

x(n−1) − x̂
(p=4)
(n−1)

)

/ x(n−1)% from 250 randomly generated data sets.
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Figure 3: The dependence of the smallest value of p needed for complete sample recovery
on sample size n. Blue curves: smoothers through the (n, smallest p) data. Black lines:
these have the equation 2× smallest p = n.
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1.13, [34]) and transformed the margins so that they followed a log-normal distribution. Let the
resulting data be (xi, yi), i = 1, . . . , n. The log-normal parameters were chosen with reference to
the AECOM project revenues data using the method of moments. In this way, there is some match
between the simulated x1, . . . , xn and y1, . . . , yn data sets, and the project revenues data. For this
simulation we used the BiCopSim function of the VineCopula R package [35]. We decided to work
with the bivariate Student t copula because, unlike the bivariate Gaussian copula (Ex 1.12, [34]), it
has non-zero upper tail dependence (Section 2.3, [34]). Other copulas could have been chosen. See
[36] for an example of bivariate copula modelling. We parameterized the bivariate Student t copula
in terms of Kendall’s τ (Section 2.2, [34]). It can be shown that the value of Kendall’s τ only depends
on the copula and not on the marginal specification. Let us assume that interest is in protecting the
largest values, x(n) in x1, . . . , xn and y(n) in y1, . . . , yn. It would be unlikely for (x(n), y(n)) to be a

data point. We approximate x(n) as x̂
(p)

(n)
and y(n) as ŷ

(p)

(n)
using Lehmer means.

We considered as a measure of joint protection the mean Pro
(p)
τ of

100 min







∣

∣

∣
x(n) − x̂

(p)

(n)

∣

∣

∣

x(n)
,

∣

∣

∣
y(n) − ŷ

(p)

(n)

∣

∣

∣

y(n)







%

over a sufficient large number of simulated data sets to ensure the stability of our results, each data

set being simulated as described using a bivariate Student t copula parameterized by τ . Pro
(p)
τ reflects

the least protected of the two maxima x(n) and y(n). Figure 4 (a) shows how Pro
(p)
τ decreases as p

increases, when τ = −0.4, 0, 0.4 and 0.8. Figure 4 (a) also shows, for comparison, the dependence

of the mean of 100
(

x(n) − x̂
(p)
(n)

)

/ x(n)% over simulated data sets on p (upper curve). We see from

Figure 4 (a) that, not surprisingly, more protection is offered to univariate data than to bivariate data.

Moreover, higher values of Pro
(p)
τ occur when τ = 0.8 than when τ = 0.4, 0 and −0.4. To investigate
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this further, in Figure 4 (b) we plot ∆
(p)
τ = Pro

(p)
τ − Pro

(p)
0 for τ = −0.4, 0, 0.4 and 0.8. ∆

(p)
τ can

be thought of as Pro
(p)
τ centred on Pro

(p)
0 . We see that ∆

(p)
0.8 > ∆

(p)
0.4 for all p, so that Pro

(p)
0.8 > Pro

(p)
0.4.

Similarly, ∆
(p)
0.4 > ∆

(p)
0 = 0 for almost all p, so that Pro

(p)
0.4 > Pro

(p)
0 . There is very little difference

between ∆
(p)
0 and ∆

(p)
−0.4, possibly due to the fact that the upper tail dependence is almost 0 in both

cases, meaning that Pro
(p)
0.4 and Pro

(p)
0 are similar. This simulation study suggests that our method

offers higher protection to more strongly correlated bivariate data.

Figure 4: (a) The dependence on p of the mean of 100
(

x(n) − x̂
(p)
(n)

)

/ x(n)% over simulated

data sets (upper curve), together with the dependence on p of the protection Pro(p)
τ

for

τ = −0.4, 0, 0.4 and 0.8 (lower curves). (b) The dependence on p of ∆
(p)
τ = Pro(p)

τ
− Pro

(p)
0

(centred protection) for τ = −0.4, 0, 0.4 and 0.8.
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5 Conclusion and Discussion

Working in the context of SDC for business data and using approximations of the largest data val-
ues based on Lehmer means, we have proposed a way of understanding the risks of unwanted dis-
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closures of sensitive large values when power moments are released. These risks can therefore be
controlled in a simple way by the powers that are released. We have illustrated this using AECOM
project revenue data. Graphs such as Figure 1 allow businesses to decide which power moments to
release. We have also illustrated how our approximations can be iteratively extended to approximate
or even recover all data values. In addition, we have briefly discussed properties of the Lehmer mean,
the TMP and bivariate data disclosure control.

Data Availability Statement

Computer code, written in R ([32]), to generate the figures and perform the analysis described in this
paper has been made available [37]. The data supporting the real business data results presented in
this paper is commercially sensitive and so has not been made available. The data supporting the
bivariate experiment is synthetic and similar data can be produced, see for example [36]. Although
the business data has not been supplied, please note that the computer code can be used with any
suitably formatted numeric data set.
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A Appendix A: The Relationship between Sample Central

and Raw Moments

It does not matter whether sample central or raw moments are released, because one can be obtained
from the other, as we now illustrate. As discussed in [38, 39, 40] for example, to obtain sample central
moments from sample raw moments we expand (xk − x̄)p using the binomial theorem:

cp;n =
1

n

n
∑

k=1

(xk − x̄)p

=
1

n

n
∑

k=1

{

p
∑

l=0

(

p

l

)

xl
k (−x̄)p−l

}

, by the binomial theorem

=

p
∑

l=0

(

p

l

)

(−1)p−l

(

1

n

n
∑

k=1

xl
k

)

x̄p−l, bringing through the sum in k

=

p
∑

l=0

(

p

l

)

(−1)p−l Ml;n x̄p−l. (5)

Similarly, sample raw moments can be obtained from sample central moments:

Mp;n =
1

n

n
∑

k=1

xp
k =

1

n

n
∑

k=1

(xk − x̄+ x̄)p

=
1

n

n
∑

k=1

{(xk − x̄) + x̄}p

=
1

n

n
∑

k=1

{

p
∑

l=0

(

p

l

)

(xk − x̄)l x̄p−l

}

, by the binomial theorem

=

p
∑

l=0

(

p

l

){

1

n

n
∑

k=1

(xk − x̄)l
}

x̄p−l, bringing through the sum in k

=

p
∑

l=0

(

p

l

)

cl;n x̄p−l.

An alternative derivation is based on showing that the binomial transformation is an involution,
following [41]. We need a preliminary results: for 0 ≤ m ≤ l ≤ p:

(

p

l

)(

l

m

)

=

(

p

m

)(

p−m

l −m

)

.

It is easy to establish this result by expanding both sides and cancelling l! from the right side and
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(p−m)! from the left. Next, consider
∑p

l=0

(

p
l

)

cl;n x̄p−l and substitute in for cl;n using (5) to get

p
∑

l=0

(

p

l

)

cl;n x̄p−l =

p
∑

l=0

(

p

l

) {

l
∑

m=0

(

l

m

)

(−1)l−m Mm;n x̄l−m

}

x̄p−l

=

p
∑

l=0

l
∑

m=0

(

p

l

)(

l

m

)

(−1)l−m Mm;n x̄p−m

=

p
∑

m=0

p
∑

l=m

(

p

m

)(

p−m

l −m

)

(−1)l−m Mm;n x̄p−m,

by the preliminary result and swapping the order of the sum

=

p
∑

m=0

(

p

m

)

Mm;n x̄p−m
p
∑

l=m

(

p−m

l −m

)

(−1)l−m, collecting terms

=

p
∑

m=0

(

p

m

)

Mm;n x̄p−m
p−m
∑

l=0

(

p−m

l

)

(−1)l,

starting the second summation variable l at 0.

When m = p, the second sum is just (−1)0 = 1. When m < p, the second term is the binomial
expansion of (1− 1)p−m = 0. So, the only non-zero term on the right side of (6) occurs when m = p
and is

(

p
p

)

Mp,n x̄p−p = Mp,n, so that

Mp;n =

p
∑

l=0

(

p

l

)

cl;n x̄p−l, (6)

as required. We have effectively inverted the relationship cp;n =
∑p

l=0

(

p
l

)

(−1)p−l Ml;n x̄p−l to
find (6) without using properties of sample moments.

Similar relationships exist between the raw and central moments of a random variable X .

Let µ = µ1 = E[X] =
∫

x f(x) dx. Let µ′
p = E[(X − µ)p] =

∫

(x − µ)p f(x) dx. Then, using an
argument analogous to the one that led to (5), we have

µ′
p = E [(X − µ)p]

= E

[

p
∑

l=0

(

p

l

)

Xl (−µ)p−l

]

by the binomial theorem

=

p
∑

l=0

(

p

l

)

E
[

Xl
]

(−µ)p−l by the linearity of E

=

p
∑

l=0

(

p

l

)

(−1)p−l µl µ
p−l.

We can easily modify the derivation of (6) to the case of random variables to getµp =
∑p

l=0

(

p
l

)

µ′
l µ

p−l.

B Appendix B: Properties of the Lehmer Mean

We prove Propositions 1 and 2 about the Lehmer mean.

Proof of Proposition 1: First, we find the derivative of Lp;n with respect to p. To do this, note that
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d
dp
xp = xp log(x). Now,

d

dp
Lp;n =

d

dp













n
∑

k=1

xp
k

n
∑

k=1

xp−1
k













=

n
∑

k=1

xp−1
k

d

dp

n
∑

k=1

xp
k −

n
∑

k=1

xp
k

d

dp

n
∑

k=1

xp−1
k

(

n
∑

k=1

xp−1
k

)2 by the quotient rule

=

n
∑

k=1

xp−1
k

n
∑

k=1

xp
k log(xk)−

n
∑

k=1

xp
k

n
∑

k=1

xp−1
k log(xk)

(

n
∑

k=1

xp−1
k

)2
by the result just stated.

Next, to establish that the derivative of Lp;n with respect to p is positive, we need to show that the
numerator of this expression is always positive, since the denominator is always positive. We write
the sums of the numerator using different indices and argue as follows:

n
∑

i=1

xp−1
i

n
∑

j=1

xp
j log(xj)−

n
∑

i=1

xp
i

n
∑

j=1

xp−1
j log(xj)

=
n
∑

i=1

n
∑

j=1

xp−1
i xp

j log(xj)−
n
∑

i=1

n
∑

j=1

xp
i x

p−1
j log(xj)

=
∑

i6=j

xp−1
i xp

j log(xj)−
∑

i6=j

xp
ix

p−1
j log(xj),

because the
∑n

i=1 x
2p−1
i log(xi) terms cancel

=
∑

i<j

xp−1
i xp

j log(xj) +
∑

i>j

xp−1
i xp

j log(xj)−
∑

i<j

xp
ix

p−1
j log(xj)−

∑

i>j

xp
i x

p−1
j log(xj)

=
∑

i<j

xp−1
i xp

j log(xj) +
∑

i<j

xp−1
j xp

i log(xi)−
∑

i<j

xp
ix

p−1
j log(xj)−

∑

i<j

xp
jx

p−1
i log(xi)

swapping i and j in the second and fourth terms

=
∑

i<j

(xixj)
p−1 {xj log(xj) + xi log(xi)− xi log(xj)− xj log(xi)}

=
∑

i<j

(xixj)
p−1 {(xj − xi) (log(xj)− log(xi))} . (7)

Expression (7) is always positive: if xj > xi, then log(xj) > log(xi), and the product (xj − xi) {log(xj)− log(xi)} >
0; similarly , the terms xj − xi and log(xj)− log(xi) will both be negative – and hence their product
will be positive – when xj < xi. Since x1, . . . , xn are not all equal, there will be a positive contribution
to (7). Hence, dLp;n/dp > 0 and Lp;n is a monotonically increasing function of p.

Proof of Proposition 2: Let us assume that there is just one largest data value: x(1) ≤ · · · ≤ x(n−1) <
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x(n). Then,

Lp;n =
xp
(1) + · · ·+ xp

(n−1) + xp
(n)

xp−1
(1) + · · ·+ xp−1

(n−1) + xp−1
(n)

=
xp
(n)

xp−1
(n)

×

(

x(1)

x(n)

)p

+ · · ·+
(

x(n−1)

x(n)

)p

+
(

x(n)

x(n)

)p

(

x(1)

x(n)

)p−1

+ · · ·+
(

x(n−1)

x(n)

)p−1

+
(

x(n)

x(n)

)p−1
(8)

= x(n) ×
βp
1 + · · ·+ βp

n−1 + 1

βp−1
1 + · · ·+ βp−1

n−1 + 1
, in which 0 < βi =

x(i)

x(n)
< 1, i = 1, . . . , n− 1

(9)

→ x(n) as p → ∞,

since βq → 0 as q → ∞ when 0 < β < 1. It is easy to extend this argument to the case when
there is more than one maximum data value, because Lp;n is a monotonically increasing function of
p, Lp;n ր x(n) as p ր ∞. Similarly, limr,s→∞ Gr,s;n = x(n); see [42].

C Appendix C: Approximating and Protecting the Second

Largest Value x(n−1):

We present an argument that suggests that x̂
(p,p′)

(n−1) → x(n−1) as p, p′ → ∞, provided p > p′.

By considering the leading terms in (9), we can approximate Lp;n as

Lp;n ≈ x(n)

1 + βp
n−1

1 + βp−1
n−1

= x(n)

(

1 + βp
n−1

) (

1 + βp−1
n−1

)−1

≈ x(n)

(

1 + βp
n−1

) (

1− βp−1
n−1

)

≈ x(n)

(

1− βp−1
n−1

)

, (10)

since (1 + x)−1 = 1− x+ x2 − · · · for 0 < x < 1 and by retaining the lowest power of βn−1.

Let 0 < θi = x(i)/x(n−1) < 1, i = 1, . . . , n − 1. Then, using an approach similar to the one that led
to (8), we have that

Sp′;n = xp′

(n−1)

{

θp
′

1 + · · ·+ θp
′

n−2 + 1 +

(

1

βn−1

)p′
}

,

since βn−1 = x(n−1)/x(n), from which we obtain, using (10):

Sp′;n − (Lp,n)
p′ ≈ xp′

(n−1)

{

θp
′

1 + · · ·+ θp
′

n−2 + 1 +

(

1

βn−1

)p′

−

(

1

βn−1

)p′
(

1− βp−1
n−1

)p′
}

≈ xp′

(n−1)

{

θp
′

1 + · · ·+ θp
′

n−2 + 1 +

(

1

βn−1

)p′

−

(

1

βn−1

)p′
(

1− p′βp−1
n−1

)

}

by a binomial approximation

= xp′

(n−1)

(

θp
′

1 + · · ·+ θp
′

n−2 + 1 + p′βp−p′−1
n−1

)

.
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Hence,

x̂
(p,p′)

(n−1) =
Sp′;n − (Lp;n)

p′

Sp′−1;n − (Lp;n)p
′−1

≈
xp′

(n−1)

(

θp
′

1 + · · ·+ θp
′

n−2 + 1 + p′βp−p′−1
n−1

)

xp′−1
(n−1)

(

θp
′−1

1 + · · ·+ θp
′−1

n−2 + 1 + (p′ − 1)βp−p′

n−1

) ,

which tends to x(n−1) as p, p′ → ∞, provided p > p′. For fast convergence, we require p, p′ and p−p′

to be large. This can be achieved to a certain extent by setting p′ = p/2 so that p− p′ = p/2.
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