20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2025

Volume 18 Issue 2
Volume 18 Issue 1

Year 2024

Volume 17 Issue 3
Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 7 Issue 2


Apriori-based algorithms for km-anonymizing trajectory data

Giorgos Poulis(a),(*), Spiros Skiadopoulos(a), Grigorios Loukides(b), Aris Gkoulalas-Divanis(c)

Transactions on Data Privacy 7:2 (2014) 165 - 194

Abstract, PDF

(a) University of Peloponnese.

(b) Cardiff University.

(c) IBM Research - Ireland.

e-mail:poulis @uop.gr; spiros @uop.gr; g.loukides @cs.cf.ac.uk; arisdiva @ie.ibm.com


Abstract

The proliferation of GPS-enabled devices (e.g., smartphones and tablets) and locationbased social networks has resulted in the abundance of trajectory data. The publication of such data opens up new directions in analyzing, studying and understanding human behavior. However, it should be performed in a privacy-preserving way, because the identities of individuals, whose movement is recorded in trajectories, can be disclosed even after removing identifying information. Existing trajectory data anonymization approaches offer privacy but at a high data utility cost, since they either do not produce truthful data (an important requirement of several applications), or are limited in their privacy specification component. In this work, we propose a novel approach that overcomes these shortcomings by adapting km-anonymity to trajectory data. To realize our approach, we develop three efficient and effective anonymization algorithms that are based on the apriori principle. These algorithms aim at preserving different data characteristics, including location distance and semantic similarity, as well as user-specified utility requirements, which must be satisfied to ensure that the released data can be meaningfully analyzed. Our extensive experiments using synthetic and real datasets verify that the proposed algorithms are efficient and effective at preserving data utility.

* Corresponding author.


ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 10 : 34 June 27 2015.